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Abstract. Multiattribute evaluation methods are being used without full understanding of the
meanings of the weights which characterize the relative importance of the attributes, The
weights 'in the methods do not carry the same meaning, even though the gquestions asked in
the procedures are similar. The weights imply the trade-offs among attributes with respect to
certain transformed measures, and the decisionmaker is presumed to be able to specify the
appropriate trade-off judgments based on preferences. Five multiattribute evaluation methods
are compared deductively based on a common framework in which the meanings of weights are
clarified: multiattribute utility theory (MUT), weighting and rating, the analytic hierarchy -
process, concordance analysis, and computation of equivalent aiternatives. For each method,
the evaluation’ procedures are described in mathematical terms and weights are derived and
interpreted by means of the preference structure represented by MUT. Transformations
between the methods make clear the meanings of weights and make possible iterative
procedures for conducting empifical comparisons of the methods.

1 Introduction :

Many techniques are currently being advocated for making decisions based on
more than one attribute. Each technique requires, implicitly or explicitly, that
decisionmakers assess some kind of trade-off among these attributes. The exact
meaning of these trade-offs is not always made explicit. It is not clear, therefore,
that the decisionmaker is providing the trade-off information with the same meaning
that the method requires. Comparisons in the current Hterature lack 2 common
framework to investigate the internal logic of the methods in assessing results (for
example, Belton, 1986; Fischer, 1977; Schoemaker and Waid, 1982). Differences
in results between methods may come both from the internal logic and from the
ways in which the decisionmaker’s preferences are elicited in the methods.
Straightforward deductive comparisons demonstrate that the logic of different
methods implies different meanings for the weights. These differences in meaning
are important for useful applications of the methods. The key question, put simply,
is: Does the method apply the elicited preferences in the way that the decisionmaker
intended when expressing them?

This question requires investigation both of the logical meaning of weights and
of the empirical ability of decisionmakers to respond to that meaning. In this
Paper we first describe multiattribute utility theory (MUT), a method in which the
meaning of trade-offs is quite explicit. We then introduce weighting and rating {(WR),
the analytic hierarchy process (AHP), concordance analysis (CA), and computation of
equivalent alternatives (CEA). For-each method we define the concrete meaning of
the weights that the decisionmaker is asked to provide and we relate that meaning
to the decisionmaker’s preferences. ' ~

The meaning of weights thus derived is important in the empirical comparison of
the methods because the questions asked in the evaluation procedures should correctly
reflect that meaning. The transformation between the methods developed in the
deductive comparison suggests an experimental design using iterative procedures.
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The responses from the decisionmaker using one method can be tested against the
equivalent responses that should be given in another method. Experiments can
then be conducted to determine which method a decisionmaker can implement
most successfully,

2 Deductive comparison of methods

In this section, each method is first briefly introduced and detailed implementation
steps are then described according to consistent terms. Decisionmaking under
uncertainty is not considered because the focus is on the meaning of trade-offs
and, except for MUT, few applications of these methods deal with uncertainty.

The term ‘value function’ is, therefore, used instead of ‘utility function’ throughout
the paper. The weights are given different labels in each method, such as ‘scaling
constants’, ‘relative importance’, and ‘trade-offs’. It is our purpose to clarify the
meanings of these terms. Table 1 briefly depicts the steps that are required in each
method.

To ensure consistency, the terms that are common to each method must be
correctly defined. The original measures for attributes, either in natural or
constructed units, are referred to as attribute levels. A space’is defined as a
collection of vectors in which each point represents an alternative. The alternative
can be represented by different coordinates in different spaces and, therefore,
transformed from one space to another by transformation functions. Unidimensional
transformation functions transform atiributes into one kind of scale whereas multi-
dimensional transformation functions transform more than one attribute into a
unidimensional scale. Standardization refers specifically to the transformation that
results in the sum of transformed measures being equal to unity. Since any

Table 1. The evaluation steps in the methods.

Multiattribute utility theory (MUT)

(1} Estimate unidimensional value functions.

(2) Given the unidimensional value functions, derive scaling constants for the attnbutes
(3} Apply the decision rule of additive value function to rank alternatives,

Weighting and rating (WR)

(1} Assign weights of relative importance to the attributes.

{2) Select unidimensional transformation functions to transform the raw scores into scores.
{3} Apply the additive decision rule to rank alternatives.

Analyiic hierarchy process (AHP}

{1) Conmstruct pairwise comparison matrices of alternatives with respect to the attributes and
of attributes with respect to the overall focus.

{2) Derive transformed weights from the matrices by means of the exgenvector approach.

{3) Apply the additive decision rule to rank alternatives,

Concordance analysis (CA})

{1) Assign weights of relative importance to the attnbutes

{2} Construct the concordance matrix,

{3) Transform the concordance matrix into the dissimilarity matrix,

{4) Apply multidimensional scaling technigue to search for a best-fitted canfiguration.
(5) Rank aiternatives according to the configuration.

Computation- of equivalent alternatives (CEA)

{1) Eliminate dominated alternatives.

(2) Select a promising alternative with thie highest likelihood of being dominant.

{3) Select another alternative to be compared with the prormsmg aiternative,

{4) Make trade-off judgments among attributes for the promising alternative so that one
alternative dominates_ the other.

(4') Delete dominated alternatives.

(5} Stop when one alternative remains. Otherwise, go to (1),
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equivalent ratios such as 2:1 and 4:2 could be used, standardization’ arbitrarily
specifies one set. A special term is given to the transformation functions in MUT

as value functions to distinguish them from the transformation functlons in other
methods. Scores refer specifically to dimensionless scales. Trade-offs among the
attributes ‘are defined as the ratios of the relative contributions of atiributes to a
unit of the overall measure of an alternative. Mathematically, the trade-offs are the
marginal rates of substitution of attribute measures relative to a constant amount of
the overall measure of the alternative. The determination of weights implies,
therefore, trade-offs among the attributes. ,

In the deductive comparisen, we assume that the decisionmaker’s preferences
can be represented by unidimensional and multidimensional value functions. The
decisionmaker is assumed to be perfectly consistent in making value judgments
based on these value functions, which are invariant throughout the evaluation
procedure. Procedures for coping with inconsistency can be incorporated in any of
these methods, but are not pertinent to the present discussion. Inconsistency will
be pertinent in the empirical work,

In what follows we will first show how the unidimensional value functions in
MUT are elicited and how the alternatives are ranked accordingly,. MUT is the
only method that elicits the complete set of the value functions. We define,
therefore, the preference structure as the unidimensioral and multidimensional
value functions defined in MUT value space, which serves as the criterion in the
deductive comparison. For each of the other methods, we will implement the steps
required by the method and compare the weights in the method with those derived
from a different but logically equivalent procedure incorporating the preference
structure, so that the meaning of weights can be related to the decisionmaker’s
preferences.

The attribute levels of aliernatives are represenied in an effectiveness matrix in
which rows are the alternatives and columns are the attributes. There are n
attributes and m alternatives. The effectiveness matrix for the set of alternatives is
given as below, where x; is the attribute level of attribute j for alternative i. Note
that the units of these attributes may be different. All the methods assume such a
matrix as a starting point, though creating the effectiveness matrix is a far from
trivial task (for example, see Keeney and Raiffa, 1976}

Xy X5a w o Xy
X X - X

?1 32 2ln . {1 )
Xod A2 . Xnn

2.1 Multiattribuse wiility theory (MUT)

Multiattribute utility theory is the most thoroughly ]ustlfzed method. Tt is derived
directly from utility theory {(Keeney and Raiffa, 1976). MUT elicits the decision-
maker’s preferences by first asking questions in terms of attribute levels. The
unidimensional value functions can then be approximated through a curve-fitting
technique, such as the mid-value splitting technique. These functions transform the
attribute levels into an interval-value scale as shown in figure 1. By multiplication
of these values by the weights or scaling constants, the trade-offs among the attribute
values are taken into account in the multidimensional value function. The scaling
constants are derived from a linear system based on the decisionmaker’s judgments
between indifferent alternatives. The alternatives are finally ranked by substituting
the derived scaling constants and the attribute levels into the approximated
unidimensional value functions and the multidimensional value function.
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Mathematically, MUT constructs the following additive value function;

ZMX) = 2 wiVIX), fori=1,2,.,m. (2)

where !

Z™ is the multidimensional value function,

X; is the attribute vector of alternative i, X; = (X, Xi3, w, X )

V' is the unidimensional value function for attribute j,

w™ is the weight or scaling constant for attribute j.

In evaluating the unidimensional value functions by means of the mid-value
splitting technique, the decisionmaker has first to set the range for each attribute.
He or she then estimates the midpoint of the value interval between the minimum
and the maximum of that attribute so that the difference between the minimum and
the midpoint, in terms of value, is the same as that between the midpoint and the
maximum. The decisionmaker then determines the midpoints for the smailer intervals
formed by the previously decided midpoints. The procedure continues until the
decisionmaker thinks that the curve of the value function can be approximated.

All questions are considered in terms of the original attribute levels,

Scaling constants are needed to rescale these values so that the units of the
values for different attributes are equal. The scaling constants are derived indirectly
by asking the decisionmaker trade-off questions. For example, consider figure 2.
One of the two alternatives, say X,, contains the maximum and the minimum of
the attribute level for the aftributes 1 and 2, respectively. The decisionmaker is
asked to specify in terms of attribute level of attribute-2 an alternative, X,, with
the minimum level of attribute 1, so that X, is indifferent to X,, The values of the
minimum and maximum attribute levels are, by definition, equal to 0 and 1,
respectively, because the values are standardized to identify a unique unit of value,
Substituting these values into the multidimensional value function Z™ results in an
equation of two unknowns, the scaling constants for the two different attributes. If
the sum of the weights is set equal to 1, the scaling constants can then be obtained
by solving the two equations for the two unknowns. Similar questions can be
applied in the case of more than two attributes.

In MUT, then, the meaning of the weights or scaling constants, w™, is that one
unit of value in the multidimensional value function Z” equals w™ times a unit of
value for unidimensional value function V;". Therefore, the weights imply the
trade-offs among attributes with respect to the value of the unidimensional value
functions. They are sensitive only to the ranges of the attribute levels, because
these ranges determine the range and therefore the unit of the value function.

lope—-———————=
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Figure 1. The unidimensional value function Figure 2. An example of two alternatives of
for attribute j in multiatiribute utility theory. two attributes for deriving scaling constants.
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_They .are not sensitive to the attribute levels themselves. The trade-offs among the
attributes relative to the attribute levels can be recovered from the multidimensional
value function by taking the partial derivatives of the function with respect to a
certain attribute level. If the unidimensional vatue functions are nonlinear, the
trade-offs thus derivéd are not constants but depend on the levels of the attributes.
It would be difficult, therefore, for the decisionmaker to estimate the scaling
constants w/” directly because that would require thinking about the trade-offs
among the attributes in terms of units of value rather than units of the attribute
level. 'We will return in section 3 to the question of whether the decisionmaker
intends to express this meaning,

To explain the meaning of weights in a more concrete way, consider the choice
of a set of apartments according to two attributes: distance to work (walking time
in minutes) and total floor area (square feet), denoted as d and f, respectively.
The ranges of the two attributes for the alternatives under consideration are
{—15 min, —5 min] and [100 fi?, 300 fi*}. The minus sign indicates that larger
numbers of minutes are less preferred. Suppose that all the alternatives are
noninferior, which means that no alternative dominates others,

In MUT, the unidimensional value functions, V}", are elicited and the functional
values for the worst and the best attributes of the ranges are set to be 0 and 1,
respectively. The weights, wj' and w/", represent the relative contribution of a unit,
in terms of value, of distance to work and that in total floor area to a unit of the
overall value of any alternative. The ratios of the two weights also imply how
many units of value the decisionmaker is willing to give up for one attribute, say
distance in walking time, in order to gain a certain amount of value in total floor
area. By means of the scaling constants and the unidimensional functions, the
trade-offs between attribute levels can be derived at any combination of attribute
levels. For example, the decisionmaker may be willing to live 3 minutes farther
away from school in order to gain 20 fi* of total area at the combination of
(~13 min, 150 ft*), but would give up less distance, say 2 minutes, to gain the
additional living space if living in a bigger apartment that is also closer to work,
say (—10 min, 200 ft*). The diminishing marginal rate of the unidimensional value
functions implies that the smaller the apartment is, the greater the value of a unit
of total floor area; the farther the distance from work, the greater the value of a
unit of walking distance. The diminishing marginal rate makes the value functions
nonlinear.

2.2 Weighting and rating (WR)
In weighting and rating, the decisionmaker first directly assigns the weights of
‘relative importance’ to the attributes (for example, see Miller, 1980), Unidimensional
transformation functions are selected to transform the attribute levels to an interval
scale in which ranges of the attribute levels, such as the differences between the
maximum and minimum levels of the atiributes, are selected as scaling factors,
resulting in a scale from zero to onme. From the attribute levels, first subtract the
corresponding minima and then rescale by dividing the results by the range, The
alternatives are then ranked based on the overall scores calculated by substituting
the directly estimated ‘relative importance’ weights and the transformed atiribute
levels or scores into a multidimensional transformation function.

Therefore, weighting and rating identifies as the best alternative the one that
maximizes the sum of the weighted scores

"
S(X) = % w'T(X), fori=12.,m, (3)

i=1




160 _ S-K Lai, L D Hopkins

where .
S is the multidimensional transformation function of scores,
X; is the attribute vector of alternative i,
Tj is the unidimensional transformation function for attribute j,
w” is the weight or relative importance for attribute j in WR.
The unidimensional transformation functlons, T,, are not confined to the maximum -
minimum scaling approach inttoduced above. Some analysts have used the mean
of the attribute levels over the alternatives for each attribute as the scaling factor.
Once a function has been chosen, the transformation of the attribute levels to
scores is purely arithmetic, without any preference inputs from the decisionmaker.

Though similar in structure to MUT, the way in which the weights are derived
in WR s different. These weights are directly assigned by the decisionmaker
considering them as the ‘relative importance’ among the attributes. Therefore, the
weights are actually insensitive to attribute ranges, but the transformation is sensitive
to changes in attribute range. In MUT there is a relationship between the scaling
constants and the ranges of the attributes because a change in ranges changes the
linear system from which the scaling constants are solved. This immediately
suggests that there is a difference in the meanings of weights in the two methods.

To examine this, we soive for the WR weights implied by a given preference
structure defined in MUT. In other words, if the decisionmaker says the MUT
weights are w/™, what should that decisionmaker say the WR weights are? Let
the vector spaces composed of attribute levels and scores be called the ‘original’
and the ‘transformed’ attribute spaces, respectively. According to the steps in
WR, the alternatives are transformed from the original attribute space into the
transformed attribute space by the unidimensional transformation functions, T;.
That transformed attribute space can, in theory, be further transformed into the
MUT value space by a set of unidimensional value functions, which should be
different from those in MUT that transform the original attribute space directly to the
value.space. For the results derived from the two procedures to be consistent, the
preference structures thus derived should be the same, In other words, the
degisionmaker is presumed to be able to specify preferences in terms of trade-offs
with respect to these attribute scores. ‘The evaluation of the aiternatives based on
the multidimensional value function with respect to scores, for example, equation {3)
should be consistent with that in MUT. Otherwise, the scores and the associated
weights in the muitidimensional transformation functmn are not indicative of the
preference structure.

Suppose that the unidimensional value functions of the scores are V), for

= 1,2, .., m. ‘The approach introduced above implies that the composite function
V7oT; is equivalent to V" That is,

VX)) = VFoT,(X), for i=1,2,mm, j=1,2,.,n. (4)
Substituting equation (4) into equation (2), we have
ZMX) = Y wrVPOT(X), fori=1,2,.,m. Y )
i=1 ‘

“To compare equations (5) and (3), both represent the multidimensional transformation
functions of scores. In particular, the first is derived from the decisiorimaker’s .
preferences, For equation (3) to be valid compared with the preference structure,
it is necessary for the trade-offs with respect to scores in equations (3) and {5) to be
the same, implying that the weights are identical given that the sums of the weights are
set to be a constant, The weights are the coefficients of the multidimensional
transformation functions, which can be recovered by taking the partial derivatives
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of § and Z™ with respect to T, in equations (3} and (5). This gives

- B
W = oz
T VIS P
J 1Z(X) = Z.4%)
= M’f o — .
aT:, VST, (X) = VyeX;(X))

The weights w are not constants if the V" are nonlinear with respect to T;, which
implies that the trade-offs among the attributes vary with respect to the scores.
The decisionmaker should then assign m sets of weights for the m alternatives,
not just a constant set of w*. Therefore, only when the unidimensional value
functions V}” with respect to scores in WR are linear can the weights w"” be
multipliers of the scaling constants in MUT and be said to be invariant across the
alternatives,

In WR, then, the meaning of the weights w" is that one unit of transformed
attribute level in the multidimensional transformation function Z* equals w” times a
unit of transformed attribute level for unidimensional transformation function T;.
These weights imply the trade-offs among the attributes with respect to the
transformed attribute levels and vary with attribute level if unidimensional value
functions 'V} are nonlinear with respect to T,. Even if the value function were
Iinear, it would be difficult for the decisionmaker to estimate these weights directly
without appropriate elicitation procedures as in MUT because the transformed
attribute levels to which the weights apply are too abstract for a decisionmaker to
consider. Does a decisionmaker asked to assess ‘relative importance’ actually
provide weights with the meaning just described? We will return to this empirical
question in section 3.

In the apartment example, the distances to work and the floor areas of the
apartments are transformed by first subtracting from the attribute levels the minima
of the two attributes, ~15 min and 100 ft?, and then dividing the results by the
ranges of the two attributes, 10 min and 200 ft>. For example, an apartment located
10 min from work with 200 ft* floor area is represented by the transformed
attribute vector (0.5, 0.5). To estimate the weights w; and w correctly, the
decisionmaker has to make trade-off judgments in terms of these dimensionless
numbers. If the value functions are nonlinear, the trade-offs with respect to the
scores at (0.5, 0.5} should be different from these at (0.20, 0.25) or (13 min, 150 ft?),
These trade-offs can be verified by transforming the attributes and the trade-offs
back to the original units by means of the transformation functions shown above.
For this case, at level (0.5, 0.5), if we assume the value functions are given as in
MUT, the decisionmaker is willing to give up 2 minutes of walking time for 20 ft?
compared with 3 minutes for 20 ft2 (0.20, 0.25),

2.3 The analytic hierarchy process (AHP)

The theoretical support for AHP has been well developed by Saaty (1980).
Compared with MUT, AHP focuses more on consistency checks of the decisian-
maker’s judgments than on explicit representation of the preference structure. The
decisionmaker’s value judgements are transformed implicitly from a set of pairwise -
comparisons based on a verbally expressed, ratio-comparison scale that is restricted
to nine integer numbers (Saaty, 1980). AHP requires the decisionmaker to construct a
hierarchical value structure as shown in figure 3 and then asks questions about
‘relative importance’ among the attributes as in WR. The weights are derived
through calculating the maximum eigenvalues for the comparison matrices, which
implies that the weights have a meaning different from that in MUT. The alternatives
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are ranked by substituting the weights of the alternatives thus derived with respect
to each attiibute and those of the attributes with respect to the overall ‘focus’ into
a multidimensional transformation function. The overall focus is defined as the
decisionmaker’s ultimate goal. The achievement of the aiternatives toward this goal
can be represented by the atiribute levels. Though the measures derived from the
unidimensional transformation functions are also called weights in AHP, they are
related to the values in MUT as will be shown below and are called transformed
or, more strictly, standardized values.

The multidimensional transformation function for AHP is as follows:

Z(X) = 3 wViX), for i =1,2,..,m. {7}

where Jl
Z*® is the multidimensional transformation function in AHP,
X; is the attribute vector of alternative I,
V] is the unidimensional transformation function for attribute j,
w are the weights for the attribute j with respect to the overall focus.

Though the unidimensional transformation function, V/(X;), can be expressed by
a single formula, it actually includes, in operation, two steps: {1) the transformation
of the attribute levels into ratios of values in the pairwise comparison matrix of
alternatives with respect to attribute 7, and {2) the derivation of the transformed
values by the eigenvector approach. In strict applications, the assignment of these
ratios is based on Saaty’s nine-integer scale. If the decisionmaker is able to express
preferences in this way, then the pairwise comparison matrix for attribute j should
be the ratios of the attribute values V/(X;) as in MUT. The matrix shown below is
said to be perfectly consistent if ¢, = 1/¢,, and ¢, = ¢,¢,, where ¢, is the cell at
row k and column /,

Vi) Vi) \/40.9))
VX)) VX Vi(X.,)
Vi X)) VX)) Vi(Xy)
W(Xl ) V;{ﬂ(xz) Wm(Xm) . (8)
VX,  ViX,) Vi'(X,,)
L Yy (X} Vi(X,) Vi{X,) B
The focus
Attribute 1 Atteibute 2 .. Attribute n -
Alternative 1 Alternative 2 Alternative m

Figure 3. The hierarchical structure for the analytic hierarchy process.
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The unique solution of the eigenvector in which the elements sum. to 1 can be
found by solving for the maximum eigenvalue for the square matrix. In the perfectly
consistent mattix, the maximum eigenvalue is equal to the number of rows or
columns of the matrix, which is m in this case, and the columns in the matrix are
linearly dependent. With a consistent matrix we know a priori that any of the
columns in the matrix is an eigenvector solution to the maximum eigenvalue
problem. Inconsistency in judgments is discussed further in section 3. For a
consistent matrix any column of the values can be standardized by dividing the
clements of the column by the sum of the elements. That is,

v = v | 5 v ©)

Let the reciprocal of the sum of the values of attribute j for the alternatives be
denoted as k;. Equation (9) can be rewritten as follows:
ViX) = KVX), (10)
where
m |
= [ 2 V;"(x-)] :
i=1

Similarly, the decisionmaker should estimate the weights for the attributes, the
pairwise comparison matrix of the attributes with respect to the overall focus, to be
the trade-offs among the attributes with respect to the standardized values V{(X;).
Let these weights be w, The 7 X n matrix is as follows:

wy Wy wy
wi o owh Wy (11)
owrows T Wy

How should these weight ratios or trade-offs be determined so that the
multidimensional transformation function in AHP is indicative of the preference
structure? Analogous to WR, these weights can be derived from the transformations
implied in the evaluation procedures. These transformations are made explicit by
the unidimensional transformation functions V7{X;) in equation (10). Substituting
equation (10) into equation (7), we have

Z%) = 2 wkVi(X), fori=1,2.,m. - . (12)

j=t -
The weights w/ must be determined so that the trade-offs among the attributes
with respect to values are unchanged. In other words, the results of the partial
derivatives of Z* in equation (12) with respect to the unidimensional value
functions V"(X;) are equal to the weights w* in MUT.
m

W, =1 azﬂ — a aV:
= wl"nkf; for J=12, ..,n. (13)
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Therefore,

1 "
w' = EW;’" = 2 w'VHX), for j=1,2,.,n. (14)
i iwt
Because AHP requires that the weights also be standardized, which means that the
sum of the weights is equal to 1, then

=w}‘/ 2 oW = Z W V(X /Z Z PVHX),  for j=1,2,.n
k=1 i=1 =1 k=1
(15)

The meaning of weights in AHP is, therefore, that one unit of standardized value in
the multidimensional value function Z* equals ;" times a unit of standardized value for
unidimensional transformation function Vi, The standardized value of attribute ; for
alternative i is obtained by dividing the attribute value of that alternative by the
total attribute value of a given set of alternatives. This is equivalent to saying that
the scale of value in MUT is standardized in AHP and therefore the corresponding
weights must also be transformed. The weights in AHP imply the trade-offs
among the attributes with respect to standardized values.

In the apartment example, assume that the attribute values for the apartment
{—10 min, 200 ft?) are (0.7, 0.8) and the sums of the values for distance and floor
area are 4.9 and 6.4, The standardlzed values of distance to work and total floor area
for the apartment are 4 and § respectively. The weights w? and wi are the relative
contributions of a unit, in terms of standardized value, of distance to work and
that of total floor area to a unit of the overall standardized value for any of the
apartments If the scaling constants w;* and w" are equal, the weights in AHP w;
and wf can be deductively derived by dividing the total values of the two attributes,
4.9 and 6.4, by the sum of the total values, 11.3. Therefore, the weights in AHP
for distance and floor area are 0.43 and 0.57 which are presumed to represent the
relative importance of the two attributes.

2.4 Concordance analysis (CA)

Concordance analysis is an adaptation for multiattribute evaluation of the traditional
concordance methods used in attitude measurement where the task is, given a
hypothesis of a ‘true’ scale, to estimate this scale by sampling among a set of
judges (Hopkins, 1980; Moroney, 1951), - In CA, each attribute is analogous to

a judge and weights are assigned to these attributes, In general, CA requires the
decisionmaker to assign weights of relative importance for the attributes. Then, by
application of some kind of transformation function, the differences among the
alternatives are synthesized by a set of indices. The final ranking of the alternatives is
determined by transforming the difference indices into a unidimensional scale.
Ditferent transformation functions can be applied and result in different meanings-
of the weights. The analogy with agreement among judges does not justify the
method, because there is no equivalent hypothesis in multiattribute evaluation that
the attributes (judges) should agree,

Voogd (1983) proposed a generalized concordance analysis in which the
alternatives can be compared in pairs. The weights are used to calculate the
concordance and discordance indices for all possible pairs of alternatives. Then,
two thresholds of concordance and discordance indices are chosen by the decision-
maker as distinguishing ‘qualified alternatives’. The final evaluation is based on the
total number of concordance and discordance indices of an alternative within the
prespecified qualification boundaries. The concordance and discordance index
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functions, C and D, are defined as follows:

CUX, X) = -[Z(wf)“/i(wf)“}m, for i=1,2mm, . (16)

jeCy

' " ifa

D(X,, Xy) = Z (”’}‘cieﬁ_ei"j!)ﬂ/ Z (w;]eik—eg'k)a] ;
feby k=1

for i=1,2,.,m (17)

where ' : |

Cy is the set of attributes on which alternative i is superior or equivalent to i’,

Dy is the set of attributes on which alternative i is strictly inferior to alternative /',

¢; is the standardized score of atiribute j in CA for alternative i;

is the weight of relative importance for attribute j defined in CA;

a  is the scaling parameter decided by the decisionmaker to vary the importance
of small weights and small divergence between the scores.

The final evaluation of.the alternatives depends on an overall score, s

m m
8 = Z Lp Z Ty (18)
P=1 =1 .
PR #d

where _
1, if C(X;, X} > n and D(X,, X;) < u, where 7 and u are thresholds,

L= .
0, otherwise.

In another procedure introduced by Massam and Wolfe (1979} a cardinal
relation among the alternatives is constructed by a multidimensional scaling
technique. In this procedure, a dissimilarity matrix is created to indicate the
degree of dissimilarity among the alternatives. Using a multidimensional scaling
technique, the decisionmaker is able to search, on the basis of iterative algorithms,
for the best-fit configuration in a multidimensional space in which the order of the
distances is consistent with that of dissimilarity indices among the alternatives,
The alternatives are thus ranked according to the resulting multidimensional scale.

For the procedures in CA to be consistent with the preference structure, the
ranking of alternatives based on equations (18) must be the same as that in MUT.
This implies that 5; must be monotonically transformed from the functional value
of the multidimensional value function Z"(X;). Put simply,

ZX) < Z"(Xp) > 5 < 5. (19)

The relation between w and w;” could be derived as in previous methods, given
the scaling parameter a and the thresholds # and g, by solving the following

equations:
2 %)~ Z"( Xy} = Fls - sp) : (20)
or _ ’ " )
j;i WV - VX)) = F [ :"§1(Zﬁn ~ Z;) "i";l (Zogw = zpuyr) ] ’ . (21)
AL [aX

whete F is a monotonical transformation function. : .
It is difficult, therefore, to define a concrete meaning for the weights in CA
because that meaning depends on the complicated condition that must be fulfilled

in equation (21). The meaning of the weights in CA is so abstracted from
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preference concepts that it is inconceivable that decisionmakers can think about
these weights in terms of what they actually mean as indicated in the above
equations. The weights on concordance [equation (16)] are the trade-offs of each
alternative being preferred to each other alternative for a given attribute compared
to other atiributes, given that the weights are iransformed by an exponential
parameter «, also chosen by the decisionmaker. For the discordance indices
{equation (17)] the weights apply to the differences for each pair of alternatives
between standardized scores of attribute level of an attribute, given a transformation
by an exponential parameter. All of the above is contingent on preference
resulting from equation (18) based on the difference between the number of
alternatives to which a given alternative is preferred (meets thresholds) and the
number of alternatives which are preferred to that alternative.

In the apartment example, the weights for distance and floor area depend,
therefore, on the determination of the alternatives to be compared, the scaling
parameter, the thresholds, and the monotonic transformation function. In most
applications, the weights are simply referred to as the relative importance among
attributes, but they are weights on very abstracted, dimensionless scales.

2.5 Computation of equivalent alternatives (CEA)
In computation of equivalent alternatives, the alternatives are directly compared in
terms of attribute levels without any explicit transformation functions (Stokey and
Zeckhauser, 1978). One alternative is first picked and transformed into a preferentially
equivalent alternative by the decisionmaker making trade-off judgments among the
attributes in terms of attribute levels. The transformation is an attempt to make at
least one alternative dominant over at least one other, which means that all the
attribute levels in the dominant alternative are greater than or equal to those in the
dominated alternative. The dominated alternatives are discarded and another
alternative is then selected from the remaining set. The process continues until all .
but one alternative has been eliminated. The remaining alternative is the best choice.
When the numbers of alternatives and attributes are large, the selection of the
attributes based on which the trade-off judgements are made and the sequence of
alternatives 1o be compared become important factors of consideration for efficiency.

Suppose that the decisionmaker has selected two alternatives, X; and X, to be
compared and that X; is chosen as the promising alternative, which the decisionmaker
thinks has the greater probability of being dominant. To test the dominance of the,
promising alternative, the decisionmaker has to transform the promising alternative
by trading off attributes, raising attributes that are inferior compared with the other
alternative, and compensating by lowering other attributes that are superior, thus
creating a-new alternative, indifferent in value terms from the original. If at least
one of the attributes in the transformed promising alternative is preferred and all
others are at least equal, the promising aliernative dominates the other. Otherwise,
additional trade-off judgments, using other attributes, must be made untll one
alternative dominates the other.

Mathematically, let the attributes in the promising alternative be partitioned into
three subsets: preferred (xf), inferior (xf), and tied (x} attributes compared with
the other alternative in the pair. Rearrange the order of the attributes as follows:

P q q P r
X} - (xils 1esy xl'qa Kils vong xrp7 xl: ) ar) .
Consequently, the other alternative can be expressed according to the same terms,
' _ 2 P r r '
Xy = (x Tyy vy x‘rp, Xty ey Xitgy Xjigs ey X-’ir,) .

where p+g+r = n, the total number of attributes.
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Because the preferred attributes in X, are exactly the inferior attributes in X,
the two sets are interchanged in the two alternatives. That is, x{ and x,-#’l refer to
the same attribute. Suppose that the decisionmaker increases attribute xJ by r; so
that the resulting attribute level is equal to that in alternative X for that dttribute
and so that the increase is compensated by the decrease of £, in x}, where
1'€j<€q,and 1 € k< p. Assume that xf is sclected so that the resulting
attribute level xf— ¢, is still preferred compared with that in altermative X,. Let
the resulting transformed promising alternative after the first trade-off be denoted
as X!. The attribute vector of the transformed promising alternative is thus as
follows:

q q 2o P r ¥ r
X ‘.Yi ( Xils ~u xr'j'rh x:}'+1) xiq! x: 13 v Xik = Ligy vy xt‘ps Xits ey Xiry x.l‘r+1) 3

where the notation ~ means the alternatives on both sides are preferentially
equivalent and x;,, is equal to xJ+z;.

Note that the attribute xJ is Ued w1th that in X, after the increment #; and .
therefore is located in the partition of the tied attributes. This implies, in terms of
value in the preference structure, that

ZMX,) = Z"(X/}), (22)
and, therefore,
WV g+ ) w VExk — a ) = w VT () " V() (23)

From equation (23), the trade-off value 4, can easily be solved as follows:
te = Vi —’—[V { s}***-t.;r)"\é'"(xf)}} . (24)

The decisionmaker then selects the next inferior attribute in the transformed
promising alternative and trades it off with one of the preferred attributes until all
the attributes, if possible, at least tie with those in the other alternative.

This procedure should lead to the best alternative that is also the top ranked by
MUT because the decisionmaker makes trade-off judgments so that the overall
values of these transformed alternatives X" are identical. The main difference
between the results of CEA and MUT is that CEA searches for the dominant
alternative whereas MUT evaluates all the alternatives. CEA. could rank all
alternatives by repeating the process for each remaining subset.

Note that in our derivations all multidimensional value functions are additive,
which implies that the atiribuies are preferentially independent of each other. That
is, when making trade-off judgments for a certain pair of attributes, the decisionmaker
does not consider the atiribute levels of other attributes. We will discuss the case
of preferential dependence in section 3. It is clear that CEA does not require-the
decisionmaker to assign weights directly to the attributes, but to make trade-off
judgments among attributes in terms of attribuie levels, Weights are implied in this
process and these derived weights can be compared with those in MUT. The
decisionmaker is asked to make explicit trade~offs that are unambiguous, but the
empirical question remains as to whether a decisionmaker is able t¢ do so. The
implied weights are the willingness to trade off in terms of the original measures of
attribute levels. These weights can be directly computed from MUT weights as in
equation {2); in the nonlinear case the weights must be computed for a’ particular
combination of levels of the attributes. It is, therefore, easy to determine what a
decisionmaker who gives a set of MUT weights should imply as CEA weights.

In the apartment example, though the trade-offs on the original attribute scales of
walking time, say 3 min and 2 min, for a certain amount of living space, say 20 f,
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are different at combinations of (—13 min, 150 ft*) and (10 min, 200 ft?),
respectively, the implied weights in terms of MUT value functions remain
unchanged.

3 Discussion )
Multiattribute techniques are usually presented by their advocates with a focus on
their peculiarities, rather than their commonalities. Although each of the five
methods. presented here has particular characteristics that we have slighted, we
have illustrated how a commonality of meaning can be achieved, In this section,
we will discuss some important issues which the decisionmaker would encounter in
using these methods, including linear unidimensional value functions, preferential
dependence among attributes, and inconsistency of repeated judgments

In the derivation of weights for WR, we have demonstrated that w;” are invariant
across the alternatives only when the unidimensional value functions V} are linear
with respect to the unidimensional transformation functions T;. If the umdlmenslonal
value functions V" and the unidimensional transformation functlons T, are both
linear, these welghts are necessarily invariant across the alternatives, Conszder
equation (5). If V" and T, are both linear with respect to the attribute levels, vy
must necessarily be lmear with respect to the transformed attribute levels from T

The additive multidimensional functions Z™, §, Z¢, and D in MUT, WR, AHP, and
CA, respectively, assume that the attributes are mutually preferentially independent
of each other. The procedure in CEA also implies preferential independence
among the attributes. That is, for any attribute j, if x; is preferred to x;;, given
certain attribute levels of other attributes, x; is always preferred to x;, given any
arbitrary attribute levels of the attributes. Mathematically, let ¥’ and ¥” be the
attribute vectors of the complementary attribute set of attribute j, for all x, ¥', ¥”,

(055, ¥') 2 (5, X)) % [0t ¥7) = (¥, (25)

ifr
where = means that the alternative on the left side is preferred or indifferent to
the alternative on the right side.

The additive multidimensional value function is the necessary and sufficient
condition for mutually preferential independence among attributes (Keeney and
Raiffa, 1976). This theorem immediately restricts the applications of these
methods because the attributes must be shown to be or assumed to be mutually
preferentially independent before the methods can be applied. In general, if
attributes are not mutually preferentially independent, the best strategy is to define
new surrogate measures of the attributes so that they are (Keeney and Raiffa, 1976),

We have assumed in the beginning the invariant and unique preference structure.
In practice, this assumption is broken because the value judgments from decision-
makers are said to be labile (Fischhoif et al, 1980). There is a need, therefore, for a
consistency check in the methods, Only MUT and AHP provide such devices.
~ The simplest consistency check procedure in MUT is to ask the decisionmaker
repeatedly to specify the preferences among alternatives to see whether the
preférences are consistent with the results from the value functions (Keeney and
Raiffa, 1976). In AHP, the consistency check is conducted by a cons1sten5y index
indicating the deviation of the maximum eigenvalue derived from a palrw1se
comparison matrix from the ideal eigenvalue for that ‘matnx which is the number
of the rows or columns of that matrix.




Trade-offs in multiattribute evaluation methods 169

4 Empirical comparisons -

The types of information entered into the methods also affect the quality of results.
MUT and CEA ask trade-6if questions, whereas WR, AHP, and CA ask about
relative importance among the attributes, In each of the two sets, the purposes of.
the information expected by the méthods are also different. The types of trade-off
questions asked in MUT and CEA are 31m11ar but for different purposes. In MUT,
the decisionmaker is asked to specify an imaginary alternative with certain given
attribute levels to which he or she is indifferent compared with another alternative.
In MUT the trade-off information is used to estimate the weights of the attributes
. in the multidimensional value function. In CEA, the decisionmaker has control in
making the trade-off judgments in the sense of selecting any real alternative from the
alternative set and any attribute to trade with, The trade-off information is used
directly to rank the altérnatives.

In askmg questions about relative importance, ‘the deductive meanings of the
weights in'WR, CA, and AHP are different. There could, therefore, be two
possibilities of error, First, the decisionmaker may not respond correctly to the
" questions which the methods ask to elicit the weights, Second, the methods
themselves may not ask the correct questions which, if asked appropriately, should
result in the responses as in the deductive comparison. For example, simply asking
about relative importance among attributes seems to be totally irrelevant to the
complex definition of the weights in CA derived in section 2. As to WR and
AHP, the question of relative importance is also too vague if the weights thus
elicited are said appropriately to reflect the meanings as defined in the deductive
comparison.

Given the clarity on how what the decisionmaker intends, or is presumed to
intend, is manifested in each method, it is' now possible to devise experiments to
assess whether methdds work in practice, The following experiments appear
worthwhile. For realistic attributes and alternatives and particular types of
problems, are the assumptions required likely to be met to a close enough
approximation that the methods will be robust? Which methods will in practice be
more robust than others? These questions can only be answered by addressing a
large sample of real or clearly realistic problems with the different methods.

In the experiments, rather than testing decomposed maultiattribute methods by
their ability to replicate holistic judgments as has frequently been done {for example,
by Schoemaker and Waid, 1982), it is more reasonable to test them by their ability
to predict a decomposed judgment derived from neutral procedures. One way to
obtain a neutral standard is to elicit judgments by means of one method (for
example, AHP), then another (for example, MUT), and iterate between the two
until agreement is reached. Agreement can be tested with the deductive
transformations described in this paper. Given this neutral standard, experiments
can be conducted to compare cither the two methods in the iteration or a third
method. Comparisons are, of course, among different attempts at judgment by the
same subject using dlfferent methods. The judgments derived can also be tested by
transformmg them into the original attribute space and asking if the decisionmaker
is satisfied with the implied trade-offs. This test and verification procedure must
be based on the transformations in the deductive comparison which can be
operationalized for the experiments, such as equations (6), (15), and (24).

5 Conclusions .

The descriptions presented show not only common meanings, but gaps in stated
assumptions that must be filled before meaningful experiments can occur. For
example, is the decisionmaker in WR supposed to think about transformed attributes
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when estimating weights? A decisionmaker asked to assess inherent weights of
importance will not necessarily provide the same response as one who is asked to
weight scaled differences among the best and worst of the attribute levels for the
given alternatives. The manipulations of preferences are clearly more transparent
to the decisionmaker in some methods than in others. On the face of it one might
expect that such methods would be easier for the decisionmaker to use effectively.
No firm conclusions about techniques can be drawn, however, until experiments
have been conducted. The framework presented here provides the transformation
capability among the methods that is necessary in order to conduct valid experiments.
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