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The relationship between MAUT and AHP for three-level hierarchic structures is demonstrated based 
on a common framework interpreting multiattribute decision making techniques. A theorem showing 
the conditions under which two multiattribute decision making techniques result in a consistent 
preference structure is proved. It can be justified based on this theorem that the rank reversal problem 
in AHP resulting from the addition or deletion of alternatives is caused by multiplying inappropriate 
criteria priorities with local priorities for alternatives. A scaling method, AHW, is introduced 
synthesizing judgments from pairwise comparisons within and among criteria into value scales in 
MAUT.  
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INTRODUCTION 

EVER SINCE THE Analytic Hierarchy Process 
(AHP) was introduced by [15], there has been a 
wide discussion about the empirical effectiveness 
and theoretical validity of the technique 
[2-4, 6, 7, 16-18, 23]. The discussion has focused 
on four areas: the axiomatic foundation, the 
correct meanings of weights or priorities for 
attributes or criteria, the 1-9 measurement 
scale, and the rank reversal problem due to 
addition or deletion of alternatives [6]. This 
paper focuses instead on the priorities among 
alternatives. 

With the possible exception of the 1-9 
measurement scale, the other areas have, in our 
view, been partially resolved, at least for three- 
level hierarchic structures. Saaty has given a 
sound, but incomplete axiomatic foundation for 
AHP because it focuses mostly on paired com- 
parisons among alternatives within criteria, 
while the interdependence between alternatives 
and criteria and among criteria across levels 
remains ambiguous [16]. The meaning of priori- 
ties for criteria (or attribute weights) in the AHP 

has been given explicitly in terms of preferences 
[13, 22]. A consensus among critical AHP inves- 
tigators has emerged that the rank reversal 
problem is caused by the ignorance of the 
relationship between the definitions of weights 
and the associated attribute scales [12, 19]. 
Strictly speaking, all four areas are closely re- 
lated in that a resolution for one area can be 
approached indirectly through that for another. 
For example, if the meanings of criteria priori- 
ties are defined in accordance with the scales 
measuring the criteria, the rank reversal 
phenomena do not occur [12, 19]. These mean- 
ings would provide insights into developing 
measurement scales different from the 1-9 scale 
used in AHP. 

An important issue fundamental to all four 
areas, but slighted in the literature, is the mean- 
ings of the ratios or entries in the pairwise 
comparison matrices of alternatives with respect 
to criteria [I, 8, 13, 24]. Even Saaty treated these 
entries as primitive scales without explicit, con- 
crete meanings [16]. Others use objective or 
subjective scores in their expositions of inter- 
preting the meanings of priorities or resolving 
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the rank reversal problem [3, 4]. These scores do 
not exist in most practical situations, limiting 
the signififcance of these theoretically justified 
expositions from an operational view point. The 
interpretation of the meanings of entries in 
pairwise comparison matrices of alternatives 
can be helpful not only in dispelling confusion 
in debate but also in relating AHP to other 
theoretically sound techniques, such as multiat- 
tribute utility theory, or MAUT [10]. 

In this paper, we interpret the meanings of the 
entries in pairwise comparison matrices in terms 
of the decision maker's preference judgments 
and introduce a modified version of AHP, 
AHP',  based on that interpretation. We first 
provide a common framework for comparing 
multiattribute decision making techniques. We 
then develop a theorem with the necessary and 
sufficient condition, such that two additive pref- 
erence aggregation, or decision rules result in 
consistent preference structures. The meanings 
of criteria priorities in AHP, or attribute 
weights in MAUT, and a solution for the rank 
reversal problem are given based on the theo- 
rem. Finally, the scaling method of AHP'  is 
illustrated. 

A FRAMEWORK 

In attempting to interpret the meanings of  
priorities for criteria and solving the rank rever- 
sal problem in AHP, theorists have used differ- 
ent perspectives. Confusion may thus arise not 
because the logic they developed is inconsistent, 
but because the languages they used make the 
concepts elusive [3-7, 20]. A common frame- 
work is necessary to provide a language for 
dispelling the confusion. Such a language was 
given in [13] for deductively comparing five 
multiattribute decision making techniques, in- 
cluding MAUT and AHP. We elaborate that 
language here as a basis for the development in 
the following sections. 

First, we define some specific terms. An at- 
tribute space is defined as a collection of vectors 
in which each point (or vector) represents an 
alternative, the dimensionality of the space 
being composed of the attributes (or criteria) 
describing the alternative. Dimensionality 
means not only the number, but also the at- 
tributes themselves that constitute a space. 
Briefly speaking, a scale is a function mapping 
an empirical relational structure to a numerical 

one. "A relational s tructure  is a set together with 
one or more relations on that set" [11]. The 
original measures (scales) for the attributes, 
either in natural or constructed units, are re- 
ferred to as attribute levels. In this framework, 
all measurements are, in essence, relative in that 
the measurements for attributes or alternatives 
in one attribute space can be transformed di- 
rectly or indirectly to those in another space. 
The notion of the original scales is defined for 
convenience to refer to the scales most fre- 
quently used. The same alternative can thus be 
represented by different sets of coordinates in 
different attribute spaces and, therefore, trans- 
formed from one attribute space to another by 
a multidimensional transformation function. 
The composition rule in AHP to derive com- 
posite priorities is a common example of a linear 
multidimensional transformation function. A 
unidimensional transformation function maps, 
on the other hand, one attribute from one scale 
to another. A decision rule in an attribute space 
is an arithmetic computation mapping multidi- 
mensional scales (either original or derived) into 
a unidimensional scale based on which relative 
worths of alternatives are determined. The addi- 
tive multiattribute utility function in MAUT is, 
for example, a decision rule. 

Scores refer specifically to dimensionless 
scales other than the original scales of  natural 
units. Trade-offs among the attributes in an 
attribute space are the ratios of the relative 
contributions of  attributes in terms of  the scales 
specified in that space to a unit, prescribed by 
the corresponding decision rule, of  the overall 
measure of an alternative. Mathematically, the 
trade-offs are the marginal rates of substitution 
of attribute scales relative to a constant amount 
of  the overall measure of the alternative. The 
determination of weights (coefficients in an ad- 
ditive decision rule associated with attributes) 
implies, therefore, the trade-offs among the at- 
tributes in a particular attribute space. Though 
weights and priorities are conceptually different 
fundamental constructs in MAUT and AHP, 
they refer mathematically to the coefficients in 
the additive decision rules. Weights and priori- 
ties, as well as attributes and criteria, are, 
therefore, used interchangeably here. 

More specifically, consider n attributes. Let 
X{ = (x,!~, xa,' xi3, ' . . .  , x,!,,) be alternative i rep- 
resented in terms of  the original scales in the 
original attribute space Y, for i = I, 2, 3 . . . . .  m, 
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where x~ i is the attribute level of attribute j for 
alternative i. Let U, R be two other attribute 
spaces with the same dimensionality (composed 
of  the same set of  attributes), but different 
attribute scales. Let VU, and V'j,j' = 1, 2, .. . ,  n, 
be the unidimensional transformation functions 
mapping the scale for attribute j from the 
original attribute space -t]- into the scales in 
U and ~ respectively. Thus, V~=(Vg(xl~), 

u l t~ l t _ _  r I V2(xi2) . . . . .  V,,(xi,,)) and Vi - (Vl (x~l ) ,  
r t r t V2(xi2) . . . . .  V,,(xm)) are two score vectors rep- 

resenting the same alternative i in spaces U and 
respectively. Let Z" and Z '  be two additive 

decision rules in spaces U and ~ of the forms 
shown in (1) and (2). 

Z"(xl,) = ~ wT~(7(xl/) (1) 
] =  1 

and 

Z , ( x b ) =  Z , r , = . ,  wj V}(xii), for i 1,2, 3 , . .  m, 
j=l 

(2) 

where w7 and w~ are the coefficients associated 
with attributes in the specified scales and thus 
the marginal rates of  substitution of  the at- 
tribute scales relative to constant amounts of the 
overall measures of an alternative in spaces U 
and ~ respectively, w~'s and w~s are usually 
called weights or priorities and normalized so 
that the sums are equal to unity. 

The relative worths and thus the ranking of  a 
set of alternatives determined by a decision rule 
in one attribute space should be consistent with 
that in another, given that the dimensionalities, 
and thus the attributes, of  the two attribute 
spaces are the same and that the decision 
maker's preference structures with bounded 
value functions are stable over time. Otherwise, 
one or both of the two decision rules are not 
indicative of the decision maker's preference 
structures. A preference structure is a math- 
ematical construct representing the decision 
maker's preference relations among alterna- 
tives. The interesting question is: under what 
conditions do the two additive decision rules, Z" 
and Z ' ,  defined by (1) and (2) in two attribute 
spaces, yield a consistent preference structure? 
The concept of  permissible transformation is 
helpful in deriving the condition. 

A permissible transformation is a mapping of 
a set from one scale to another in which the 

properties of an empirical relational structure 
are retained. In the context of preference struc- 
tures for multiattribute alternatives, a permiss- 
ible transformation implies that the relative 
worths among alternatives remain the same 
before and after the transformation. By defi- 
nition, two types of such transformations exist. 
According to [11], a scale Z whose permissible 
transformations are 

T(Z) = ~Z, ~ > 0, (3) 

is called a ratio scale, where T is a transform- 
ation function. A scale Z whose permissible 
transformations are 

T ( Z ) = ~ Z  +f l ,~  > 0 and fl # 0, (4) 

is called an interval scale. Note that for a ratio 
scale, the ratios of scale values (relative worths) 
are determined uniquely and that for an interval 
scale, the ratios of intervals are invariant. Two 
scales are mutually permissibly transformable if 
one of them can be transformed to the other 
according to either (3) or (4). 

The necessary and sufficient conditions for 
mutually permissible transformation between 
additive, multiattribute decision rules is given in 
Appendix 1 as Theorem 1. More specifically, 
two additive, multiattribute decision rules in 
two spaces composed of the same set of at- 
tributes are mutually permissibly transformable 
if and only if the weights of  one decision rule are 
proportional to the partial derivatives of the 
other decision rule with respect to the associated 
unidimensional value functions respectively, the 
proportionality being a constant. 

RANK REVERSAL AND SOLUTIONS 

Theorem 1 provides a basis for solving the 
rank reversal problem and defining the meaning 
of priorities in AHP in the context of an AHP- 
MAUT relationship. Both AHP and MAUT 
have sound axiomatic foundations. Though 
comparative study of the relationship between 
the two techniques has been done, no consensus 
has been reached [1, 8, 13]. We describe this 
relationship here using the language proposed. 

The rank reversal problem and the meaning 
of weights are dual problems in that solving one 
problem gives a solution to the other. We argue 
that the rank reversal problem in AHP is caused 
by multiplying the normalized alternative pri- 
orities in the AHP scales by the attribute 
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weights in scales other than the AHP scales 
and that the weight (priority) for an attribute 
(criterion) in relation to the AHP scales has a 
meaning different from that in the MAUT 
scales. In particular, the AHP weight for at- 
tribute j is the sum of the weighted values over 
all alternatives divided by the total of these sums 
for all attributes in the MAUT scales. ~ We use 
the term values to indicate specifically the scores 
measured in the MAUT scales in space ~A. 

To justify the two arguments, we need to 
define explicitly the meanings of the entries in 
pairwise comparison matrices for AHP based 
on the decision maker's preference judgments 
and then derive the relationship between AHP 
and MAUT, both leading to consistent prefer- 
ence structures. Consider a three-level hier- 
archy. That is, except for the focus and 
alternative levels, there is only one level of 
attributes. For m alternatives and n attributes, 
let x,~ indicate the level of attributej for alterna- 
tive i in the original attribute space ~-. That is, 
X ~  = ( X ~ l  ,Xi2,Xi3; ' . . . ,  Xi',) is a point (vector) of 
alternative i in ~-. Suppose the MAUT scale for 
measuring x~ is represented by the transform- 
ation function, V 7, for attribute j in space ~ .  
If  these transformation functions are bounded, 
as is usually the case, the trade-off ratios be- 

rn l tween attribute scores or values, V) (x~), must 
be taken into account by assigning weights to 
these attributes. Therefore, attribute weights 
already implicitly determine these trade-off 
ratios. Let the weight associated with attribute 
j be w~". The total weighted scores (values) for 
alternative i in the MAUT scales are 

Z ' ( x ~ )  = ~. w;' V'~(x~), for i = 1,2 . . . .  , m, 
j = l  

(5) 
where 

Zm= the multidimensional additive decision 
rule for MAUT in space M, 

w~" = the attribute weight in relation to the 
MAUT scales for attribute j, 

x,~ = the attribute level measured in the orig- 
inal scales for alternative i with respect to 
attribute j in space T, 

V~" = the unidimensional transformation func- 
tion sending attribute j from space q]- to 
space I~. 

~A more concise version of the justification is demonstrated 
in [13]. 

In AHP, the ratios of the pairwise compari- 
son matrix between alternatives for attribute j 
are, by definition, the ratios of the correspond- 
ing weighted values, w'fl V~'(x~). The weights w 7' 
are cancelled out in the numerator and denomi- 
nator and the remaining elements in the matrix 
become the ratios of the values VT(x~). The 
eigenvector approach in AHP results in priori- 
ties summing to unity, which is a scaling oper- 
ator sending the measurement for an attribute 
from space ~ to space A. The score of attribute 
j for alternative i in the AHP scales in space A 
is, assuming the matrix is perfectly consistent, 

m I 
a f m I , V~(x,j) = ~OV~ (x,~)= v~ (x,j) 

k = l  

f o r i = l , 2  . . . . .  m; j = l , 2 , . . . , n ,  (6) 

where Vy and ~. are the unidimensional trans- 
formation functions sending the measurement 
for attributej from space T to space A and from 
space M to space A respectively. Tj is a normal- 
ization operator represented by the eigenvector 
approach. V}' is thus a two-step transformation; 

m ! it first transforms xb to V~ (x0) from It to M, 
and then V~' to v 7 from M to A by Tj. 

Note that the denominator in (6), 

VT(x'~j), 
k = l  

is a constant specifically for attribute j, given m 
alternatives. If we multiply the weights w7 in the 
MAUT scales with the scores V~(x~) derived in 
the AHP scales as usually done in the rank 
reversal problem literature, the relative worths 
among the alternatives will not be the same as 
those from (5) simply because the trade-off 
ratios between the attributes in the MAUT 
scales are changed. Rank reversal among 
alternatives may then occur. The mathematical 
exposition in Appendix 2 shows how the rank 
reversal problem can thus occur and how that 
problem can be resolved resulting in the correct 
meanings of weights and criteria priorities in 
MAUT and AHP. 

Appendix 2 shows that the meaning of w~ in 
(13) results from the eigenvector approach to 
derive the normalized local priorities for 
alternatives and criteria, or attribute values and 
weights, in the AHP scales, wj' is also alterna- 
tive-dependent because the denominator in (13) 
depends on the alternatives being considered. 
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As argued by some theorists [23], such meaning 
as defined in (13) is so complicated that the 
decision maker is not likely to be able to express 
it in any appropriate way. Some alternative 
scaling methods have been proposed to make 
that meaning more comprehensible to the de- 
cision maker while maintaining relative worths 
among alternatives [2, 21]. Others focus on re- 
solving the rank reversal problem based on 
restrictive assumptions [9]. Whatever the scaling 
method, the condition in Theorem 1 must hold. 
In the next section, we introduce one such 
scaling method, called the AHP' technique, for 
three-level hierarchic structures based on the 
transformation between the AHP and MAUT 
scales as justified in Appendix 2. 

A NEW SCALING M E T H O D  

The scaling method of AHP' is similar to that 
of the B-G modified AHP originally introduced 
by Belton and Gear [2] and named in [18]. AHP' 
is, however, different from the B-G modified 
AHP in that the meanings of ratios of pairwise 
comparison matrices are explicitly defined as 
preferences according to (6), while the B-G 
modified AHP only uses hypothetical, absolute 
scores (such as unbounded value functions) with 
no concrete operational implications as a means 
to illustrate the scaling method. It is not clear 
yet how the B-G modified AHP can be used for 
eliciting subjective judgments. AHP' can there- 
fore be operationalized based on the meanings 
of the entries in pairwise comparison matrices. 
In short, AHP'  requires the decision maker to 
make ratio judgments between alternatives and 
between attributes as in AHP in order to derive 
attribute weights and scores in spaces • and & 
respectively. The AHP' method then consoli- 
dates, based on the AHP-MAUT relationship, 
these judgments into a preference structure 
defined in space L~. 

Let x~,j be the best level for attr ibutej  among 
all alternatives measured in the original scales in 
space -0-. To simplify, assume all V~'s are ratio 
scales in that their permissible transformations 
are constructed by multiplying V~' with a scalar 
for each attribute j. To derive the weights with 
respect to the MAUT scales, w~'s, one can 
simply make pairwise comparisons between the 
best attribute levels among attributes and then 
apply the eigenvector approach to derive the 
normalized weights. For example, in making 

the ratio judgments between x~ and x~,2 
between attributes 1 and 2, the decision maker 
is specifying the ratio between w'~ V"((x'h~ ) and 
w~' VT(x~,2). Because all VT'(x~,j)s are, by con- 
vention, equal to unity, the resulting ratio be- 
comes wT'/wT. All wT's can thus be uniquely 
determined from such pairwise comparison 
matrix among attributes through the eigenvec- 
tor approach. 

Similarly, in making pairwise comparisons 
between alternatives with respect to each at- 
tribute j, the decision maker is specifying the 
ratio of the attribute values. For example, com- 
paring alternatives l and 2 with respect to 
attributej implies that the ratio between the two 
is 

m m t wj v; (x,j) 
m m t ' wj v~ (x2j) 

which can be simplified to 

v ; ' ( x l j )  

v ' ;  ( x '~j ) " 

Through the eigenvector approach, the resulting 
scores, V](x,~)s, are, however, those measured 
in the AHP scales where the sum of VT(x,~)s is 
equal to unity as shown in (6), not in the MAUT 
scales. 

We have shown from (7) that the decision rule 
Z m" by summing w~ V~'(x,~)s violates the con- 
dition in Theorem 1. It is necessary to transform 

a '  
either w~' to wj or Vy to V~"' in order to 
construct a preferentially consistent structure 
[retaining the relative worths among alternatives 
given by (9) or (5)], where w)" and VT" may or 
may not be equal to w~' and V~" respectively. The 
w~"s are given by the decision maker as judg- 
ments and cannot therefore be transformed to 
w)'s in (13) with V~"s unknown to gain consist- 
ency. We, therefore, need to transform V7 to V~" 
to ensure a consistent structure. That transform- 
ation is given mathematically in Appendix 3, 
which allows w~'s and V~s thus obtained to be 
consolidated into a coherent structure. 

Therefore, instead of answering importance 
questions as in AHP, in AHP' the decision 
maker first compares in pairs the relative worths 
between the best levels among attributes and 
then compares the relative worths between 
alternatives in pairs with respect to each at- 
tribute. The arithmetic computation of the 
relative worths among alternatives is based 
on (15) and (20). For example, compare two 
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apartments, A and B, considering walking time 
(measured in min) to work and floor area (in 
ft2). Assume A, being five minutes away from 
work, is closer to work than B (10min) and B 
with 300 ft 2 has larger floor area than A with 
200 ft 2. To derive the MAUT weights using the 
pairwise comparison approach, the decision 
maker would respond to the following question: 

"What is the ratio of worth between 5 min 
spent walking to work and 300 ft 2 of floor 
space?" 

In making ratio judgments among alternatives 
with respect to attributes, say walking time to 
work, the decision maker would respond to the 
following question: 

"What is the ratio of worth between 5 min 
spent walking to work and 10 min?" 

It is not clear, however, whether the decision 
maker is being asked to trade off unit for unit 
at that point or over the entire intervals in these 
questions. The clarification of this issue begs 
another paper. We concentrate here only on the 
scaling procedure. It is important to note that 
all the required conditions for additive multiat- 
tribute value functions as specified by [10] must 
be satisfied for such questions to be meaningful. 
The scaling methods of AHP', AHP, and 
MAUT are summarized in Table 1. Note that 
AHP and AHP' are different not only in elicita- 
tion questions, but also in the scales through 
which decision makers respond to these ques- 
tions. In particular, AHP restricts ratio re- 
sponses within a 1-9 scale, while AHP' does 
not. An empirical comparison among AHP', 
MAUT, and AHP has been done based on 
such transformations [14]. AHP' did not per- 
form as well as the other techniques, but it could 

be improved by asking questions easier to 
respond to. 

DISCUSSION 

As shown in Appendix 2, the rank reversal 
problem in AHP is purely a mathematical arti- 
fact, not something that results from a set of 
behavioral claims built into the mathematics. 
Thus the coincidence that these mathematics 
yield reversal and people exhibit reversal does 
not justify rank reversals, even for behavioral 
arguments. Appendix 2 also shows that the 
interdependence between alternatives and cri- 
teria is inherent in the computation of AHP. 
Saaty's claim in Axiom 3 that alternatives are 
independent of criteria is only for constructing 
a hierarchical structure [16]. There is a distinc- 
tion between the computational and structural 
interdependences. Saaty's axiomatic foundation 
does not make this distinction or at least 
demonstrate the computational interdepen- 
dence. 

AHP' is not a replacement for AHP, but a 
variant of it. It can also be viewed as a sup- 
plement to Saaty's axiomatic foundation in that 
the entries in pairwise comparison matrices are 
given explicitly as preference judgments. More 
specifically, the definition of the scale Pc(A, Aj) 
not defined by Saaty in [16] is given in the 
present formulation. The scale is, in general, the 
ratio of two weighted scores in a certain at- 
tribute space 5, i.e. 

s s t w, V, (x,i) 
$ s t wj V;(x,j) 

where w[ and w} are the coefficients (or weights 
or priorities) implying the trade-offs between 

s l $ t attribute scores V,(xki)and V}(x~j) in relation 

Table 1. The interpretation of MAUT, AHP, and AHP" based on the framework 

Methods MAUT AHP AHP' 

Attribute spaces 

Decision rules 

Coefficient methods 
of derivation 

Unidimensional trans- 
formation functions 

Methods of derivation 

A M' 

z-,(x;)  = ~: w:' v;,(x:O z°(x:o = ~ u, V,(x,,),o o , z . , (x ; )  = ~. .,.- v,- (x,,), 
i = l  / = 1  / - I  

":7 ")' "7' 
tradeoffjudgments paired comparisons paired comparisons 
among attributes among attributes among best attrib. 

(with 1-9 scale) levels (without I-9 scale) 

v? v~' -~ Tj 0 V7 v 7 =- r ;  0 V~ 

equivalence judgments 
within attributes 

paired comparisons 
among attribute levels 

(with 1-9 scale) 

paired comparisons 
among attribute levels 

(without I-9 scale) 
then scaling by (20) 
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to the overall measurement for alternatives k 
and l in that space. We use the MAUT scales as 
an example to pinpoint the relationship between 
M A U T  and AHP. 

The rank reversal problem can be caused 
either by applying inappropriate attribute 
weights to attribute scores measured in a space, 
e.g. (7), or by addition or deletion of  alternatives 
from the original set when AHP is applied [2]. 
The solution for the first type of rank reversal 
is to apply the appropriate weights to the at- 
tribute scores in a decision rule, both being 
defined with respect to the scales in the same 
space. The reason for the second type of rank 
reversal in AHP is that the addition or deletion 
of alternatives will change the scaling or nor- 
malization factor of  (6). Thus, the resulting 
attribute scores are no longer measured by the 
same unidimensional transformation functions 
in one space, say A, but by different functions 
in a different space A'. The criteria priorities 
must be changed according to (13). Therefore, 
the rank reversal problem in AHP and the 
meanings of criteria priorities have a dual prop- 
erty in that retaining the relative worths among 
alternatives prescribes computation of  priorities 
in a particular way, such as that in (13). It can 
also be generalized from the arguments justified 
that certain scaling methods for attributes pre- 
scribe the definition of weights, if the condition 
of mutually permissible transformation in Theo- 
rem 1 holds. AHP [with the weights and scores 
as defined in (13) and (6)], AHP',  MAUT, and 
the B-G Modified AHP are a set of  different 
scaling methods resulting in such transform- 
ations. 

CONCLUSIONS 

In this paper, we provide a common language 
to compare multiattribute decision making tech- 
niques and use that language to interpret AHP 
based on preferences. A theorem of the con- 
dition under which two additive, multiattribute 
decision rules are mutually permissibly trans- 
formable is proved. The theorem implies the 
dual property between the rank reversal prob- 
lem and the meaning of  weights in AHP. The 
problem can be avoided if both the weights and 
attribute scores in a decision rule are derived 
from the scales in a common attribute space. 
Using MAUT and AHP as an example, the 
relationship between the two is given explicitly 

also based on that theorem. A new scaling 
technique, AHP',  is designed to incorporate 
both MA U T and AHP into a common logic in 
which the meaning of the entries in pairwise 
comparison matrices of alternatives is given as 
ratios of  preferences. 

A P P E N D I X  1 

Conditions for Mutually Permissible 
Transformation 

Theorem 1: Let  Z"(x~.) and Z ' ( x~ )  be two 
decision rules as defined by (1) and (2) in spaces 
U and ~ composed o f  the same set o f  attributes 
respectively. Z ~ and Z r are mutually permissibly 
transformable i f  and only i f  w~ = k(OZ~/O V~), for  
all j = 1, 2, 3 . . . . .  n, where k > 0 is a constant o f  
proportionality. 

Proof." For the sufficiency part, if Z u and Z r 
are ratio scales, then Z " =  ~tZ ~, ~ > 0. Taking 
partial derivatives on both sides with respect to 
each V)' respectively, we have 

Oo~Z r OZ r OZ" 
w ~ -  C V T - ~ - - = k - -  j = 1 , 2 , 3  . . . . .  n, 

where k = a > 0 .  If Z u and Z r are interval 
scales, then Z u = aZ ~ + fl, a > 0. Taking partial 
derivatives on both sides with respect to each V~ 
respectively, we have 

O~Z r # Z '  tgZ r 
w ] =  #V;  = ~  OV7 =k~''''vv) j = 1 , 2 , 3  . . . . .  n, 

where k = ~t > 0, which is desired. 
For the necessity part, let wj-U - 

k(OZ~/OV~), j  = 1, 2, 3 . . . . .  n. Since w)' is a con- 
stant and thus continuous with respect to V], 
the general antiderivative of w)' with respect to 
V 7 is w ~ V T ( x ~ ) +  c, where c is a constant. 

u u t We thus have w; V) (x~) = kZr(x~)  - c, i = 
1, 2, 3 . . . .  , m; j = 1, 2, 3 . . . . .  n. Summing the 
weighted attribute values (items on the left side) 
in space U across all attributes j for some 
alternative i, we have 

~. w] VT(x~) = Z"(x~)  = n[kZ"(x~)  - c] 
) = t  

= nkZ~'(xb) - nc = eZr(xb)  

+ ~(ot = nk; ~ = - n c ) ;  

OME23/4~1 
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~t > 0  because k > 0 ,  which completes the 
proof. Note that if c =0 ,  Z" and z r  are a 
ratio scale; otherwise, they are an interval 
scale. It is obvious that Theorem 1 holds as 
long as the attribute scores in the arguments of  
Z" and Z '  are defined in the attribute spaces 
with the same dimensionality, i.e. x~ can be 
replaced by vi~ in any attribute space 5 with a 
dimensionality different from the original one, 
i . e . j # k .  

A P P E N D I X  2 

The Rank Reversal Problem and its Solution 

Mathematically, let 

zma(xtij) = ~ w7 V;(xtij) 
j=l 

be a decision rule in the AHP space A, 
representing the multiplication of the MAUT 
weights with the AHP priorities of  alternatives. 
Substituting (6) into this decision rule, we 
have 

t ~'~ a t = w 7 (x,j) 
j=l 

= wT' ovT(xb) 
j = l  

= ~ kjw'f VT(x~), (7) 
j = l  

where 

Taking the partial derivative on Z ~ with re- 
spect to each V~'(x~), we have 

0Z"" 
a V;' - kJwT" (8) 

Because kj varies in relation to j, the condition 
in Theorem 1 does not hold. We can, therefore, 
conclude that Z" and Z m" are not mutually 
permissibly transformable. The ranking or rela- 
tive worths among alternatives derived from Z "  
and from Z"" may not be the same. Therefore, 
the weights w~"s defined in relation to the 
MAUT scales must be modified in (7) to retain 
the relative worths of  alternatives. How these 
weights should be modified in order to preserve 

relative worths among alternatives is the ques- 
tion we next address. 

In AHP, the multidimensional additive de- 
cision rule for three-level hierarchic structures, 
i.e. the composition rule, is similar to that in (5) 
as shown in (9) 

a a I Z"(x~) = w i V) (xi~), for i = 1, 2 . . . . .  m, 
j= l  

(9) 

where 

Z " =  the multidimensional additive decision 
rule for AHP in space A, 

w)' = the attribute weight in relation to the 
AHP scales for attribute j, and 

V)' = the two-step unidimensional transform- 
ation function sending the measurement 
for attribute j from space q]- to space A 
through M. 

Substituting (6) into (9) to derive the meaning of  
w~ in terms of  w 7' and VT', we have 

ZO(x ) = w; Vr(x ) ' 

J=' VT(x' j) 
k = 1  

f o r i = l , 2 , . . . , m .  (10) 

In order for (10) to be preferentially consist- 
ent with (5), i.e. to retain the same relative 
worths among alternatives or for (10) and (5) to 
be mutually permissibly transformable, the 
trade-off ratios between the attributes with re- 
spect to the values in the MAUT scales must 
remain the same. That is, if Z" and Z "  are 
mutually permissibly transformable, by Theo- 
rem 1 

oZ°(xb) 
w7 = k o v 7 (xb)  

=k 
a wj 

k = l  

f o r j  = 1 , 2 , . . . , n ,  (11) 

where k > 0 is a constant. From (11) 

wy=k-'w~' ~ V'fl(x~j) 
k = l  

=k -~ w'~K) (x4j), for j =  1,2 . . . . .  n. 
k = l  

(12) 
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Because AHP requires that all weights sum to 
unity, 

w7 vT'(xi~) 
,~ i=1 for j =  1,2, n. ] 4 ~ j  : ~ . . . ,  

w~ V~ (Xk3 
/ = 1  k = l  (13) 

With (6) and (13), the solution to the rank 
reversal problem caused by inconsistent weights 
and scores implies the relationship between 
MAUT and AHP. Conversely, w T' and V~" can 
also be represented in terms of w7 and V~' [12]. 

A P P E N D I X  3 

Scaling Transformation from V~ to V~ in AlIP" 
Let T~ be the transformation function. We 

have 

m '  t t a t Vj (x~) = Tj © Vj (x,j), 

f o r i = l , 2  . . . . .  m; j = l , 2  . . . . .  n, (14) 

where V~" is a unidimensional transformation 
function sending attribute j from space q]- to 
space ~ ' .  Replace V 7 with VT" in (7). We then 
have 

z"(x~) = ~ w7 vT"(x13 
]= 1 

= w i T ;  0 V~" (xij) 
j - I  

for i = 1, 2 . . . . .  m, (15) 

where Z" '  is the new decision rule defined in 
space M'. In order for Z m and Z m' in spaces I~ 
and D~' respectively to be mutually permissibly 
transformable, the condition in Theorem 1 re- 
quires that 

3 Z  m' 
w T ' = k ~ - ~ ,  m f o r j  = 1,2, . n. (16) 

~V t •. , 

The sufficient condition ensuring that (16) 
holds is that V~' is a positive linear transform- 
ation of V~" with a common scalar, implying 
that either T~ is positively linear with respect to 
V~', which is in turn positively linear with re- 
spect to VT' or both are negative linear trans- 
formations. Negative, unidimensional linear 
transformations are not included in the set of 
permissible transformations according to Theo- 
rem 1 because any such transformation may 
result in k < 0. Both T~ and V}' must, therefore, 
be positive linear transformations with respect 

to V 7 and V~" respectively. For simplicity, we do 
not include the constant terms in the linear 
transformations because we have ratio scales. 
Therefore, we have 

t t a l T j ( x i i ) = o : t i V i ( x i j )  for i = 1,2 . . . . .  m; 

j = 1,2 . . . . .  n (17) 

and 

a t t n  t Vj(x~)=o~,jV~(x~), f o r i = l , 2  . . . . .  m ;  

j = 1 , 2  . . . . .  n, (18) 

where c~tj and a,j are both greater than zero. 
Substituting (18) into (17), the composite func- 
tion T ~ © V 7  in (15) becomes 

t~l" / ,' a t m t Vj (xii) = T j (3 V~ (xij) = ~,gt,j v~ (xij), 

f o r i = l , 2  . . . . .  m; j = l , 2  . . . . .  n. (19) 

Substituting (19) into (15), taking partial de- 
rivatives with respect to each VT, and compar- 
ing the result with (16), the product a,j~,~ is equal 
to the constant k for all js,  implying that the 
trade-offs among attribute values in terms of vm ] 

remain the same between Z m and Z m'. ~,j and ~,j 
should, therefore, be so determined that their 
product is a constant for alljs. For example, 2,j 
is the coefficient in (18) transforming I/7 to V~'. 
If a,.j is defined as in (6), i.e. 

I 

then aq must be a multiplier of the reciprocal of 
c~,j so that the product of the two is a constant. 
Since all VTs are unknown, c~,:j can be any 
arbitrary value and thus ~a cannot be uniquely 
determined. By convention, the maximum of 
VT'(x~) is, however, set to unity. With this 
further information, we can uniquely determine 
~,j and e,j. 

Let V'f(X'bj), the value for the best level of 
attribute j, be equal to unity. Because V~ is, 
according to (6), a monotonic increasing trans- 

a t _ _  . rn  t formation function of V)", Vj (xb j ) -  a,.i V) (xbj) 
must also be the maximum among all V~(xlj)s. 
Therefore, let 7,:j= V~"(x~j). We have 
~,s = k[V](x~j)] l because ~,/c% = k. Substituting 
c~,j and c% thus obtained into (18) and (19), we 
have 

a t 

m' , for i =  1,2, m. (20) vj (x,,) = k V~ (x~) 
vj (xbj) 
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m' ! The transformed scores, V) (xu), can then be 
multiplied by w~'s according to (15) to compute 
the relative worths among alternatives consist- 
ent with those derived from (5) and (9). Note 
that when k = 1, i.e. ct0~,~ = 1, according to (19) 

m' t m t V) (xo.)= V~ (x,7). To derive from normalized 
scores for alternatives with respect to each 
criterion in AHP the MAUT values for the 
corresponding attribute, we can simply divide 
these normalized scores by the maximum for 
each attribute or criterion. 
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