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Abstract. Based on the assumptions that cities are semi-lattices and that their
spatial configuration are complex structure, I use one-dimensional cellular
automaton representing a hypothetical, linear city as an analytic tool to inves-
tigate possible transition rules fulfilling these requirements, and base on that
metaphor to draw some implications for urban change. For two-value (k ¼ 2),
one-neighbor (r ¼ 1) one-dimensional cellular automata, the stochastic tran-
sition rules thus found imply that determinism at one level can give rise to
stochasticity at another level, and that the seemingly stochastic processes of
urban change might indeed be governed by a few deterministic transition rules.

JEL classification: R00, R10, R14

1. Introduction

The paper investigates explanations of the local-global interaction of urban
spatial systems, with a focus on one-dimensional cellular automata repre-
senting hypothetical, linear cities as an analytical tool for urban change. It
is grounded on the hypothesis that the global characteristics of complex spa-
tial systems, such as cities, emerge from the local interaction among the ele-
ments consisting of these systems, such as individual agents in an economy
(e.g., Holland 1995, p. 1, 41–42; Krugman 1996, p. 21; Simon 1998, p. 33–34).
Though it is arguably true that using one-dimensional cellular automata may
render the analytical frames and results unrealistic or too simplistic, analyz-
ing ‘long, narrow’ cities has been a long tradition in urban economic theory
(Krugman 1996, p. 22). I follow that tradition here by focusing on interaction
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among local agents, hoping that this new approach would yield useful insights
into our understanding of how urban systems evolve. The physical environ-
ment of a city is the outcome of interacting local development decisions.
Models on urban evolution based on the top down approach but ignoring the
local interaction imply that planning can be carried out in a similar way, e.g.,
vertical, centralized organizations, comprehensive process, and generic poli-
cies for land development. With such a conception distinct from the funda-
mental characteristics of spatial evolution, urban change is thus di‰cult to
be tamed in reality by traditional planning techniques because of the com-
plexity of relatedness among spatial decisions (Batty 1995). Insight into e¤ec-
tive planning techniques may be gained through the bottom up approach to
urban change, i.e., understanding how the local interaction among the devel-
opment decisions a¤ects the overall trend in the urban physical change.
Therefore, I tend to explore into such possibility by focusing on the local-
global interaction at the most fundamental, abstract level. I thus set aside the
substantive interpretation of or elaboration on the abstract structure as future
work. Obviously, the price of abstractness is the deviation from realism, but
if interpreted appropriately, we can still gain useful insight from the abstract
construct. A similar example following this line of research is conducted by
Hillier (1996), but he did not focus on the formalization of the conceptual
models of spatial organization, which I set as my long-term objective. Thus
the paper serves as a starting point toward that end. I have, however, con-
ducted concrete computer experiments searching for the order out of chaotic
evolution of complex spatial systems, and reported my findings elsewhere (Lai
1999). Di¤erent from most current two-dimensional cellular automata spa-
tial simulations, the present paper explores deductively into the mechanisms
underlying the emergence of complex structures using one-dimensional cellu-
lar automata representing hypothetical, linear cities.

There is a shift recently in paradigm on urban spatial modeling approaches
from the top down approach that views the aggregate pattern in urban change
as equilibrium seeking to the bottom up approach that considers the seem-
ingly stable pattern as emerging from the dynamics and interaction among
local actions (Batty 1996). This perspective of understanding urban change is
in part influenced by a new orientation in science that concerns the behavior
of complex systems: complexity.

Most planning behavior takes place in complex settings. The elements
in these settings interact with each other not only forming a complex network
of information flow, but also resulting in uncertainty or incomplete informa-
tion faced by planners. Understanding the nature of the complex system is
helpful in developing a prescriptive theory of planning to aid planners to cope
with uncertainty. Recent development in such understanding leads to a set of
related new fields, including artificial life (e.g., Emmeche 1994) and complex-
ity theory (e.g., Gell-Mann 1994).

The central idea of artificial life is that simple rules result in complex
behavior of a system. Artificial life researchers conduct their experiments on
computers by assuming that life can emerge from very simple rules and cre-
ating their own universes or games of life on computers. The validity of these
computer experiments is being debated, but they may be e‰cient tools for
discovering the simple rules of nature, which can possibly be replicated in
the real experiments. The ultimate objective of the artificial life research is
to search for the plausible laws of nature for further mathematical proof.
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The computer experiment approach used in the artificial life research is quite
promising for developing ill-understood theories.

An even more powerful, ambitious theory encompassing a wider range of
phenomena is complexity theory (Gell-Mann 1994). It is an attempt of a crude
integration of the current state of knowledge scattered across various dis-
ciplines, including theoretical physics, psychology, computer science, political
science, and economics. The objective of the theory is to discover complex
adaptive systems in nature and explain their behavior. It is distinct from the
traditional systems approach in that complexity theory can, to some extent, be
thought of as a bottom up approach, whereas the traditional systems approach
is a top down one. Many urban dynamical and spatial models are based on
the latter approach (e.g., Forrester’s urban system dynamics model 1973).
Complexity theory seeks the fundamental laws of how a system adapts to
interference, exogenous or endogenous. Information is an important measure
of describing the system’s behavior. The systems approach tends to divide the
whole system into functional components. The relationship among these
components is subject to rigorous tests to verify the model. No fundamental
laws are required in building that model. Complexity theory provides a pow-
erful perspective of interpreting observed social and natural phenomena, but
its development is still in an early stage.

There are other earlier works on complexity, most notably Simon (1998)
and Alexander (1965), which are more pertinent to our discussion of land use
change in cities. Simon considered the complex structures emerging in nature
as ‘‘nearly decomposable systems’’, meaning the elements in these systems are
organized in an almost hierarchical form of structures. But unlike pure hier-
archies where the elements are related only from the top down, the elements at
the same level in these complex structures are interrelated among each other.
Such structures have the advantage of growing fast, thus resulting in higher
probabilities of being existent. In an attempt to search for the organizational
principles of how natural cities grow, Alexander proposed a generic structural
principle called ‘‘semi-lattice’’ similar to Simon’s idea about complexity for
spatial organization. In contrast to a tree, in this principle the relationship
among elements of a system is similar to that in what Simon called nearly
decomposable system in that if any two elements have common subsets of the
system, then these subsets also belong to the system. A tree structure where
the relationship among elements is based on which belongs to which is thus
by definition a semi-lattice structure. The relationship underlying most semi-
lattice structure is much more complex and richer than that in a simple tree
structure. Alexander (1965) argued that cities grow following the semi-lattice
principle, and planners should recognize such a principle and provide appro-
priate spatial structures accordingly.

Cellular automata, as a metaphor of urban change in linear cities used
here, are a branch of complexity theory. They are the simplest models of
investigating the local-global interaction in complex systems. The research on
cellular automata was pioneered by von Neumann (1966) and thoroughly
investigated by Wolfram (1994c, 2002). The behavior of cellular automata has
not been fully understood, but researchers have gained enough experience in
order to formalize its dynamics (e.g., Urias et al. 1996). There are at least two
approaches to understand the cellular automata behavior, computer experi-
ments (e.g., Wuensche and Lesser 1992 and Wolfram 2002) and mathematical
deduction (e.g., Urias et al. 1996 and Wolfram 1994a, b). Distinct from com-
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puter simulations using two-dimensional cellular, I intend to explore into
urban change metaphorically based on the mathematical deduction approach.
General structural transition rules of how spatial agents interact that charac-
terize complex spatial systems can be derived from the deduction as will be
depicted shortly. A promising research agendum would be to incorporate a
set of hypothetical structural considerations, such as Alexander’s semi-lattice
structure, into the cellular automata model by designing or discovering evo-
lution rules according to the logic of that structure. Through deductive rea-
soning based on automata theory and mathematical logic (e.g., Hopcroft and
Ullman 1979 and Mendelson 1987), we could then look into the trajectories
of the system to generalize how each of such rules a¤ects the evolutionary
outcomes. Finally, we could evaluate how well each rule thus selected in the
cellular automata model maps the real urban dynamics on the empirical urban
growth indices, such as population and morphology of urban boundaries.

Therefore, the main construct underlying our exploration is cellular
automata, in particular those of one dimension, that have been used to inves-
tigate evolution of complex systems (e.g., Wolfram 1994c, 2002). They are
recently being applied in the explanation of or experimentation on urban
development (e.g., Couclelis 1985 and Cecchini 1996). Instead of modeling the
reality of urban change based on cellular automata as most such work seems
to imply, I use one-dimensional cellular automata here as an analytic tool
representing hypothetical, linear cities to examine how complex spatial struc-
tures emerge. That is, I view cities as complex spatial system reminiscent of
those emerging from cellular automata and search for possible rules that
govern their evolution.

Section 2 introduces briefly the one-dimensional cellular automata model
and distinguishes between a tree and semi-lattice rules based on the state tran-
sition graphs. Section 3 classifies the 256 transition rules for the model where k
(number of cell values or states) and r (number of interacting neighbors) equal
to 2 and 1 respectively in terms of rule types and Wolfram’s four-class cate-
gories (1994b). In particular, a characteristic transition rule is derived from the
eight rules that are classified as semi-lattices and exhibit complex structures.
Section 4 provides implications for urban change based on the characteristic
transition rule found in Sect. 3 and discusses some spatial issues and possible
future extension of the model.

2. The model

Consider a linear city of a finite set of spatial agents or blocks represented by
a one-dimensional cellular automaton. Assume each block can be of one of
two types of land use, retail with a value of one or residential of zero. There
can be many ways in which the linear city could evolve in space and time.
Grounded on the assumption that cities are complex structures in the form of
semi-lattices, the question is: Are there underlying mechanisms of the inter-
action of these blocks in the linear city that give rise to semi-lattice struc-
tures. There are at least three ways of defining the semi-lattice form of one-
dimensional cellular automata models: 1) direct specification of transition
rules (i.e., how blocks a¤ect each other in land use); 2) pattern recognition of
configurations through time in the time-space plots; and 3) pattern recogni-
tion of configurations of space at each time step. The common framework on
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which the three definitions are based to identify the semi-lattice form of cel-
lular automata models is automata theory and formal languages. Since there
is no easy way to define the semi-lattice form through pattern recognition for
the one-dimensional cellular automata, I focus here on the first approach to
defining semi-lattices. The evolution of a one-dimensional cellular automaton
can be viewed as a set of languages generated by a finite automaton. Follow-
ing Wolfram (1994a), let the value (land use type) of site (block) i at time step
t be denoted as a

ðtÞ
i and be a symbol selected from the alphabet

S ¼ f0; 1; . . . ; k � 1g ð1Þ

All possible sequences of these symbols form the set S of cellular automaton
configurations AðtÞ. At each time step each site value is updated according to
the values of a neighborhood of 2rþ 1 sites around it by a local (or transition)
rule (determining how the blocks interact)

f : S2rþ1 ! S ð2Þ

of the form

a
ðtÞ
i ¼ f½aðt�1Þ

i�r ; a
ðt�1Þ
i�rþ1; . . . ; a

ðt�1Þ
iþr �: ð3Þ

This transition rule leads to a global mapping

F: S! S: ð4Þ

on the complete cellular automaton configurations. Let WðtÞ denote the set of
configurations generated after t iterated applications of F on S, i.e.,

WðtÞ ¼ F tS: ð5Þ

There is an economic way of representing all possible configurations gen-
erated by F over t time steps on S based on a so called state transition graph
for the non-deterministic finite automaton (NDFA) corresponding to F (c.f.,
Appendix A). Take rule 76 as defined by Wolfram (1994a) (c.f., Appendix B).
Figure 1 shows the corresponding NDFA of the rule.

Each node represents a state of the automaton. Each arc with a symbol
(0 or 1) is the mapping from a subset of three neighbors at the previous
time step to a symbol for the central site of the subset at current time step.
For example, the arc from node 11 to 10 with the symbol of 1 represents the
mapping from 110 to 1. The finite automaton is non-deterministic because
there are same symbols emanating from a particular set of nodes. This means
that transformations from these nodes cannot be determined definitely. For
example, node 00 has two arcs labeled 0 emanating from it to node 01 and
itself. Thus the finite automaton transition graph for rule 76 in Fig. 1 is
non-deterministic. For each non-deterministic finite automaton, there exists at
least a corresponding deterministic finite automaton (DFA) generating the
same language based on subset construction (Hopcroft and Ullman 1979).
Take rule 76 again. The state transition graph for one such corresponding
deterministic finite automaton is shown in Fig. 2. Since there can be more
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than one DFA corresponding to an NDFA, for my classification purpose I
developed an algorithm to derive the minimal DFA for each transition rule,
that is uniquely associated with the NDFA for that rule (c.f., Appendix A).

As depicted earlier, Alexander’s (1965) notion of semi-lattice is the orig-
inal idea concerning spatial overlaps of categories, whereas I use one-
dimensional cellular automata here as the simplest discrete dynamic system
mimicking evolution of the linear urban system. Even though the relation-
ship between the semi-lattice in the spatial context of urban systems and those
in the cellular automata rules is di‰cult to pin down analytically, they are
at least topologically equivalent. Alexander’s original idea of spatial overlaps
is based on set theory and topology, which is also the theoretical foundation
of my approach to the typology of the one-dimensional cellular automata
rules. There might be links between the two, but they fall outside the scope of
the present paper. Since both Alexander’s and my expositions are based on the
same theoretical foundation, at a higher level, the notion of semi-lattice can
be used here to examine its relation to urban change. Based on Alexander’s
(1965) distinction between trees and semi-lattices, we can define two types of
transition rules according to the concept of deterministic finite automata.

Definition 1. The tree rule. A transition rule is called a tree rule if and only if,
when one node is a subset of another in the state transition graph corresponding
to the minimal DFA obtained from the NDFA, there exists at least one arc
connecting the two nodes.

Fig. 1. The NDFA corresponding to rule 76
Fig. 2. A DFA corresponding to the
NDFA for rule 76
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Definition 2. The semi-lattice rule. A transition rule is called a semi-lattice rule
if and only if, when two nodes in the state transition graph corresponding to the
minimal DFA obtained from the NDFA have common elements (or subsets of
the nodes in the NDFA), there exists at least one arc connecting the nodes. If a
transition rule includes both the tree and semi-lattice cases, it is classified as a
semi-lattice rule.

According to these definitions, the DFA for rule 76 as shown in Fig. 2 belongs
to the semi-lattice structure. Appendix A depicts how the DFA is constructed.
In order to determine the DFAs uniquely for the purpose of rule classifica-
tion, I graphed the minimal ones with the smallest numbers of arcs and nodes.
The minimal DFAs thus obtained should be unique (c.f., Appendix A). It
turns out that rule 76 indeed belongs to semi-lattices. By searching out all such
rules in a given one-dimensional cellular automaton, we can find their general
characteristics of its evolution and analyze their behavior as will be shown on
the following sections.

3. Simulation design and general observations

According to the patterns of evolution in the space-time configurations, one-
dimensional cellular automata can be classified into four categories (Wolfram
1994b).1 The four general classes are:

Class 1: A fixed, homogeneous state is eventually reached;
Class 2: A pattern consisting of separated periodic regions is produced;
Class 3: A chaotic, aperiodic pattern is produced; and
Class 4: Complex, localized structure are generated.

Class 4 structures are of particular interest because theoretically they are
capable of universal computation and reminiscent of Game of Life (Wolfram
1994 and Berlekamp et al. 1985). I argue that if the spatial evolution of cities
can be viewed as governed by the interaction rules yet to be found similar to
those in cellular automata, the changing spatial configurations of cities suggest
that the Class 4 structures would most likely, at least in the simplest case of a
linear city, represent such evolution. Buildings are being constructed and torn
down; factories and stores being opened and closed; houses being built and
abandoned; population concentrations prospering and declining; and com-
mercial and residential areas moving from one place to another. Behind all
these dynamics might lie the fundamental rules according to which individual
agents interact spatially. With the two structural assumptions on the spatial
evolution of cities depicted earlier (i.e., semi-lattice rules and complex struc-

1 Though Wolfram claimed that ‘‘approximately’’ there are no Class 4 structures in one-
dimensional cellular automaton with k ¼ 2 and r ¼ 1 (1994b), the observation seems inconclusive
because it is only an ‘‘approximate’’ estimation. In the paper, I summarized all the 256 rules in
terms of the four classes by running the program provided by Wuensche and Lesser (1992). The
number of the rules yielding the Class 4 structure was indeed small (only eight out of 256), which,
I think, is consistent with Wolfram’s findings. Even though these structures are much simpler than
the Class 4 structures found in other one-dimensional cellular automata with greater ks and rs,
they cannot be apparently classified into any of the rest of the three classes. The simplicity of the
structure might be caused by the simplicity of the rules with k ¼ 2 and r ¼ 1, but we cannot thus
conclude that there are no Class 4 structures in this model.
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tures) and imposed on the one-dimensional cellular automaton, we can search
out these transition rules conforming to the assumptions from which insight
into the origin of urban spatial evolution might be gained.

Using the one-dimensional cellular automaton with k ¼ 2 (two uses of
land) and r ¼ 1 (number of blocks a¤ecting each other), I first grouped the
256 rules into the semi-lattice, tree, and the remaining rules as defined earlier.
I then further classified each group of rules according to Wolfram’s four-class
categories. The following table shows the result. The detailed classification of
the transition rules is given in Appendix B.

It can be found from Table 1 that almost all transition rules are semi-
lattices or trees. Among these rules, 70.0% of the total are semi-lattices. The
number and percentage of transition rules that result in the Class 4 structure
(8 rules and 4.5%) are relatively greater for the semi-lattice rules than those for
the tree rules (0 rules and 0.0%). The proportion of the transition rules yield-
ing the Class 4 structure is significantly low among all transition rules (3.1%).
Note that the transition rules resulting in the Calss 4 structure are all semi-
lattices. A closer examination of the transition rules that are semi-lattices and
yield the Class 4 structure can be used to generalize the characteristics of such
rules. Table 2 shows the eight rules within this category.

The general characteristics of the eight rules can be summarized as below
(see Table 3):

(1) If the central cell (block) has the same value (type of land uses) as that of
the two neighbors at time t (000 and 111), its value will change at time
tþ 1.

(2) If the central cell has the value of zero at time t with its two neighbors
having di¤erent values (001 and 100), there is a probability of 3/4 that the

Table 1. Classification of transition rules for one-dimensional cellular automata with k ¼ 2 and
r ¼ 1 by types of rules and classes of structures

Semi-lattice rules Tree rules Others Total

Class 1 structures 58 24 2 84
Class 2 structures 87 32 4 123
Class 3 structures 25 4 12 41
Class 4 structures 8 0 0 8
Total 178 60 18 256

Table 2. The eight transition rules that are semi-lattices and result in class 4 structures

Rule number 111 110 101 100 011 010 001 000

9 0 0 0 0 1 0 0 1
41 0 0 1 0 1 0 0 1
65 0 1 0 0 0 0 0 1
97 0 1 1 0 0 0 0 1

107 0 1 1 0 1 0 1 1
111 0 1 1 0 1 1 1 1
121 0 1 1 1 1 0 0 1
125 0 1 1 1 1 1 0 1
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value of that cell will remain the same, while 1/4 that the value will change
at time tþ 1.

(3) If the central cell has the value of zero at time t with its two neighbors
having the values of one (101), there is a probability of 3/4 that the value
of that cell will change, while 1/4 that the value will remain the same at
time tþ 1.

(4) If the central cell has the value of one at time t with its two neighbors
having the values of zero (010), there is a probability of 3/4 that the value
of that cell will change, while 1/4 that the value will remain the same at
time tþ 1.

(5) If the central cell has the value of one at time t with its two neighbors
having di¤erent values (110 and 011), there is a probability of 1/4 that the
value of that cell will change, while 3/4 that the value will remain the same
at time tþ 1.

4. Implications and discussion

The characteristic transition rule found here may shed some promising
light on understanding the origin of urban change. Firstly, viewing the values
or states of cells as di¤erent land uses, we can observe how these land uses
interact spatially. Consider, for example, retail and residential uses as live
(whose value is one) and dead (whose value is zero) cells respectively. The
characteristic transition rule shows that when there are only retail uses in a
neighborhood with no residential uses, the central site will change from the
retail to residential use, whereas when there are only residential uses in that
neighborhood with no retail uses, the central site will change from residential
to retail use. This is intuitively plausible because the residential uses form the
market for the retail uses, and without the market, the retail uses cannot sur-
vive. Secondly, the characteristic transition rule is stochastic, implying that
determinism at one level can give rise to stochasticity at another level. The
seemingly probabilistic processes of urban evolution might indeed be governed
by a few deterministic interaction rules.

The proportions of the 256 rules in terms of rule types and classes in Table
1 imply that a tree rule may lead to a structure di¤erent from a semi-lattice
rule. The crux is, however, that the eight rules found resulting in the Class 4
structure are all semi-lattices. This means that the transition rules embedded
in the complex structure are themselves semi-lattices. More realistically, urban
systems may be viewed as two-dimensional cellular automata. It is very likely
that these systems are also the Class 4 structures in the time-space plots

Table 3. The characteristic transition rule for semi-lattices with complex structures

State of surrounding State of cell under consideration

Live cell (1) Dead cell (0)

Two live cells Dead 1/4 Chances of being dead
One live and one dead cells 3/4 Chances of being live 3/4 Chances of being dead
Two dead cells 1/4 Chances of being live Live
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because two-dimensional cellular automata also appear to exhibit the four
classes of structures identical to those in one-dimensional cellular automata
(Wolfram 1994b). The implication is that the deterministic transition rules
that govern the evolution of urban systems are semi-lattices. Put di¤erently,
though Alexander’s definition of semi-lattices is concerned with spatial over-
laps in a city and there is no simple mapping between the semi-lattices in the
spatial context of urban systems and those in automata theory, it is likely, as
my findings seem to imply, that the two definitions might be closely related.
The spatial overlaps in terms of semi-lattices might imply that the dynamic
representation of these overlaps, e.g., the minimal DFAs in the one-dimension
cellular automaton, is also a semi-lattice. That is, they are at least topologically
equivalent.

It is too simple minded at present to argue that urban spatial evolution
indeed follows the analysis suggested here. As put earlier, I use the one-
dimensional cellular automata model only as a representation of a hypotheti-
cal, linear city to understand the origin of urban change, setting aside the
substantive meanings of the dynamics for future work. I have, however, con-
ducted computer experiments based on a two-dimensional cellular automaton
where the transition rules could evolve and land developers could learn these
rules over time (Lai 1999). Preliminary findings showed that the complex spa-
tial system tended to self-organize itself toward a critical state (Bak and Chen
1991). The implication is that the complex structure in the two-dimensional
cellular automaton and the self-organizing process might be closely related.

To render the findings useful in planning, the immediate future work is
to determine whether urban spatial models built on the rules similar to the
characteristic transition rule can map the real data of urban change. Based on
the hypothesis that the dynamics of cities have common characteristics across
all scales, we need first to search for a general, scale free principle governing
the dynamics based on which to evaluate the alternative models using the
real data, such as the growth of populations. One possible alternative of such
principle is Stanley et al’s (1996) work on scaling behavior in the growth of
companies. Based on the data on growth rates of sales of all US manufactur-
ing publicity traded companies, Stanley et al (1996) found the growth rates
could be all scaled according to an exponential distribution function and col-
lapsed across all scales of sales into a single distribution given the scaling func-
tions of parameters in the exponential distribution. Stanley et al thus con-
cluded that ‘‘these findings are reminiscent of the concept of universality
found in statistical physics, where di¤erent systems can be characterized by
the same fundamental laws, independent of ‘microscopic’ details’’. Extending
Stanley et al’s models on growth rates of companies, we can search for a similar
principle that governs growth rates of cities based on the real data on pop-
ulations for all scales of cities. The cellular automata models on urban change
derived from the characteristic transition rule are then evaluated according to
the principle. The most e¤ective model should yield the prediction of the
population growth across all scales of cities closest to the reality.

5. Conclusions

Grounded on the hypothesis that the spatial evolution of urban systems can
be characterized by the local interaction of individual agents, I expect to gain
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progress ultimately in understanding the origin of urban change from the new,
bottom up perspective that has arisen in recent years. In the present paper, I
have found, at least for a hypothetical, linear city of one-dimensional cellular
automata, that the complex structure is derived from a set of transition rules
whose dynamic representations are semi-lattices, not trees. These deterministic
transition rules can be further grouped into a stochastic transition rule that
gives rise to the Class 4 structure. The implication is that the evolution of
urban systems, when viewed as cellular automata, might be governed by a few
deterministic transition rules which are semi-lattices in the dynamic represen-
tation. A few deterministic rules might indeed be embedded in the seemingly
stochastic processes of urban evolution.
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Appendix A
The minimization algorithm of transforming NDFAs to DFAs

Since an NDFA for a rule corresponds more than one DFA for the same rule,
it is necessary to find a unique representation of the DFA for that rule in order
to determine whether the rule is a tree or semi-lattice. One way to accomplish
this is to transform the NDFA to the unique DFA by the minimization algo-
rithm given by Wolfram (1994a) and Hopcroft and Ullman (1979). Using rule
76 as an example, I propose here a three-step operational version of the algo-
rithm based on which the 256 rules are classified.

Step 1. Initiate the binary relations from the NDFA
Denote nodes 00, 01, 10, and 11 by u0; u1; u2 and u3 respectively. The

NDFA for rule 76 as shown in Fig. 1 can be represented by the following
binary relations:

u0 ! 0u0; u0 ! 0u1; u1 ! 1u3; u1 ! 1u3; u1 ! 1u2; u2 ! 0u1;

u2 ! 0u0; u3 ! 0u3; and u3 ! 1u2; ð6Þ

where the left hand side in a relation is the current state (node), while the right
hand side the next state, and the number is the output of the transition.

Step 2. Construct a DFA based on sequential subset construction
Let s be the set of all possible subsets of nodes ui, for i ¼ 0; 1; 2, and 3.

There exit totally 24 or 16 possible subsets. Each subset is a candidate for the
nodes in a corresponding DFA, and the starting node for the DFA is defined
as the subset s� ¼ fu0; u1; u2; u3g. Consider the set of relations in (6) and
proceed from the starting node. Given the output value, i.e., the number on
the right hand side, as zero, the elements in the starting node, i.e., u0; u1; u2,
and u3 are transformed, if any, into the elements in the subset fu0; u1; u3g,
which is represented by an extended relation fu0; u1; u2; u3g ! 0fu0; u1; u3g.
Similarly, given the output value as unity, we can obtain another extended
relation fu0; u1; u2; u3g ! 1fu2; u3g. Apply the same logic to the resulting
subsets on the right hand side in the above relations sequentially until no new
subsets are enumerated, and we can construct the extended relations in the
DFA as shown below. Note that not all the 16 subsets are included in the set
of extended relations.

fu0; u1; u2; u3g ! 0fu0; u1; u3g; fu0; u1; u2; u3g ! 1fu2; u3g;

fu0; u1; u3g ! 0fu0; u1; u3g; fu0; u1; u3g ! 1fu2; u3g;

fu2; u3g!0fu0; u1; u3g; fu2; u3g!1fu2g; fu2g ! 0fu0; u1g; fu2g ! 0f g;

fu0; u1g ! 0fu0; u1g; and fu0; u1g ! 1fu2; u3g; ð7Þ

where f g represents the empty set.
Given the extended relation set (7), we can easily construct the DFA for

rule 76 as shown in Fig. 2.
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Step 3. Minimize the DFA to obtain the unique representation
The DFA obtained from Steps 1 and 2 may not be unique because some

nodes can be further combined in light of these extended relations in order
to reduce the size of the DFA. The minimization step is to find pairs of nodes
where the arcs with the same values are directed to the same nodes, and then
combine these pairs of nodes into single ones. Consider the extended relation
set in (7) and the DFA shown in Fig. 2 for rule 76. The nodes fu0; u1; u3g and
fu0; u1g are directed to themselves given the output value as zero, while to
fu2; u3g given the output value as unity. The two nodes can thus be combined
into fu0; u1; u3g with other extended relations remaining the same. A closer
examination cannot find further combinations, and the resulting DFA as
shown in Fig. 3 is the minimal representation of the DFA for rule 76, which is
also unique.

Appendix B
Classification of transition rules into semi-lattices and trees

The 256 transition rules of the one-dimensional cellular automata with two
neighbors (r ¼ 1) and two cell values (k ¼ 0 or 1) are classified into 12 cate-
gories according to rule types (trees, semi-lattices, or other) and structure
classes (Classes 1 through 4): S1 stands for semi-lattice, Class 1 rules; S2 semi-
lattice, Class 2; S3 semi-lattice, Class 3; S4 semi-lattice, Class 4; T1 tree, Class
1; T2 tree, Class 2; T3 tree, Class 3; T4 tree, Class 4; O1 other, Class 1; O2
other, Class 2; O3 other, Class 3; and O4 other, Class 4. The determination of
the semi-lattice, tree, or other structural rules is based on the definition given
in Sect. 3, according to the minimization algorithm as illustrated in Appendix
A. The resulting classification is shown in Table 4.

Fig. 3. The minimal representation of the DFA for
rule 76
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Table 4. Classification of transition rules into semi-lattices and trees

Rule number Binary code Classification Rule number Binary code Classification

0 00000000 O1
1 00000001 T2
2 00000010 T2
3 00000011 T2
4 00000100 S2
5 00000101 S2
6 00000110 S2
7 00000111 S1
8 00001000 T1
9 00001001 S4

10 00001010 S2
11 00001011 S2
12 00001100 T2
13 00001101 T1
14 00001110 T2
15 00001111 O2
16 00010000 T2
17 00010001 T2
18 00010010 S3
19 00010011 T1
20 00010100 S2
21 00010101 S1
22 00010110 S3
23 00010111 S1
24 00011000 T2
25 00011001 S2
26 00011010 S3
27 00011011 S2
28 00011100 S1
29 00011101 S2
30 00011110 O3
31 00011111 S1
32 00100000 T1
33 00100001 S2
34 00100010 T2
35 00100011 S2
36 00100100 T2
37 00100101 S2
38 00100110 S2
39 00100111 S2
40 00101000 S1
41 00101001 S4
42 00101010 S2
43 00101011 S2
44 00101100 S2
45 00101101 O3
46 00101110 S2
47 00101111 S2
48 00110000 T2
49 00110001 S2
50 00110010 S1
51 00110011 T2
52 00110100 S2
53 00110101 S2
54 00110110 S3

55 00110111 T1
56 00111000 T2
57 00111001 S1
58 00111010 S1
59 00111011 S2
60 00111100 O3
61 00111101 T2
62 00111110 S1
63 00111111 T1
64 01000000 T1
65 01000001 S4
66 01000010 T2
67 01000011 S2
68 01000100 T2
69 01000101 S1
70 01000110 S1
71 01000111 S2
72 01001000 S1
73 01001001 S3
74 01001010 S2
75 01001011 O3
76 01001100 S2
77 01001101 S1
78 01001110 S1
79 01001111 T1
80 01010000 S2
81 01010001 S2
82 01010010 S3
83 01010011 S2
84 01010100 S2
85 01010101 T2
86 01010110 S3
87 01010111 S1
88 01011000 S2
89 01011001 S3
90 01011010 O3
91 01011011 S2
92 01011100 S1
93 01011101 S1
94 01011110 S1
95 01011111 S1
96 01100000 S1
97 01100001 S4
98 01100010 S2
99 01100011 S1

100 01100100 S2
101 01100101 S3
102 01100110 T3
103 01100111 S2
104 01101000 S1
105 01101001 O3
106 01101010 S3
107 01101011 S4
108 01101100 S2
109 01101101 S3
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Table 4 (continued)

Rule number Binary code Classification Rule number Binary code Classification

110 01101110 S3
111 01101111 S4
112 01110000 T2
113 01110001 S2
114 01110010 S1
115 01110011 S2
116 01110100 S2
117 01110101 S2
118 01110110 S1
119 01110111 T1
120 01111000 O2
121 01111001 S4
122 01111010 S1
123 01111011 S2
124 01111100 S3
125 01111101 S4
126 01111110 T3
127 01111111 T1
128 10000000 T1
129 10000001 T3
130 10000010 S2
131 10000011 S1
132 10000100 S2
133 10000101 S1
134 10000110 S2
135 10000111 O3
136 10001000 S1
137 10001001 S3
138 10001010 S2
139 10001011 S2
140 10001100 S2
141 10001101 S1
142 10001110 S2
143 10001111 T2
144 10010000 S2
145 10010001 S1
146 10010010 S3
147 10010011 S3
148 10010100 S2
149 10010101 S3
150 10010110 O3
151 10010111 S1
152 10011000 S2
153 10011001 T3
154 10011010 S3
155 10011011 S2
156 10011100 S1
157 10011101 S1
158 10011110 S2
159 10011111 S1
160 10100000 S1
161 10100001 S3
162 10100010 S2
163 10100011 S1
164 10100100 S2

165 10100101 O3
166 10100110 S2
167 10100111 S3
168 10101000 S1
169 10101001 S3
170 10101010 T2
171 10101011 S2
172 10101100 S2
173 10101101 S2
174 10101110 S2
175 10101111 S2
176 10110000 T2
177 10110001 S1
178 10110010 S1
179 10110011 S1
180 10110100 O2
181 10110101 S3
182 10110110 S3
183 10110111 S1
184 10111000 S2
185 10111001 S2
186 10111010 S1
187 10111011 T2
188 10111100 S2
189 10111101 T2
190 10111110 S2
191 10111111 T1
192 11000000 T1
193 11000001 S3
194 11000010 T2
195 11000011 O3
196 11000100 S2
197 11000101 S1
198 11000110 S1
199 11000111 S1
200 11001000 T1
201 11001001 T1
202 11001010 S2
203 11001011 S2
204 11001100 S2
205 11001101 T2
206 11001110 S1
207 11001111 T2
208 11010000 S2
209 11010001 S2
210 11010010 O3
211 11010011 S2
212 11010100 S2
213 11010101 S2
214 11010110 S2
215 11010111 S1
216 11011000 S2
217 11011001 S2
218 11011010 S3
219 11011011 T2
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Table 4 (continued)

Rule number Binary code Classification Rule number Binary code Classification

220 11011100 S1
221 11011101 T2
222 11011110 S1
223 11011111 T1
224 11100000 S1
225 11100001 O3
226 11100010 S2
227 11100011 S2
228 11100100 S2
229 11100101 S2
230 11100110 S2
231 11100111 T2
232 11101000 S1
233 11101001 S1
234 11101010 S2
235 11101011 S1
236 11101100 T2
237 11101101 S1

238 11101110 T1
239 11101111 T1
240 11110000 O2
241 11110001 T2
242 11110010 T1
243 11110011 T2
244 11100100 S2
245 11110101 S2
246 11110110 S1
247 11110111 T1
248 11111000 S1
249 11111001 S1
250 11111010 S1
251 11111011 S1
252 11111100 T1
253 11111101 T1
254 11111110 T1
255 11111111 O1
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