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Abstract. On the basis of the presumption that the effects of plans for urban development are
influenced highly by the decision mechanisms under which plans function, we compare deductively
four interactive strategies derived from three regimes of policies, namely, fixed, emergent, and no
policies, based on the two-person iterated prisoner’s dilemma game. The four strategies under
consideration are tit for tat (TFT), always defect (AD), always cooperate (AC), and random actions
(RA). The results show that TFT is the best strategy followed by RA, AC, and AD. The implications
are that policies that take into account contingencies yield higher expected payoffs than those that do
not, and that emergent policies are more effective than either fixed or no policies. The model provides
an analytical approach to the issue of evaluating the potential effects of the plans.

1 Introduction

The effects of plans are a fundamental, but difficult, question in the planning field. The
difficulty lies in our incomplete understanding of how plans affect actions and of how
these actions in turn yield desired outcomes, mainly due to the complexity of the
systems, such as cities, under consideration. With few exceptions (see, for example,
Johnson, 1996; Talen, 1996), little has been written in planning literature about
how plans affect urban phenomena (Hopkins, 2001, pages 48 —53). Talen (1996) and
Johnson (1996), in assessing empirically the effects of plans for city parks and the 1929
Regional Plan of New York, encounter difficulties because it is not clear whether the
observed behavior is caused by these plans. Alternatively, it is possible to address
the question through computer simulations and analytical deduction. Lai (1998; 2003)
conducted two computer simulations to assess the effects of plans, not in a simulated
urban environment, but in the context of organizational choice behavior. The results of
these simulations conclude that planning brings order to the complex systems in that,
as in the garbage-can model (Cohen et al, 1972), planning results in decision makers
and problems tending to stick to fixed-decision situations over time.

To our knowledge, except for two articles, no analytic deduction in the literature
addresses directly the question of the effects of plans. Intriligator and Sheshinski (1986)
use an optimization model to compare time planning and event planning in the light of
uncertainty and cost, and derive from their model five theorems on planning that
specify what type of planning is best under different conditions of uncertainty and
cost. Knaap et al (1998) construct a game-theoretic model to describe the interaction
between a local government and a developer and derive from their model a set of
behavioral propositions for an empirical test. While these two attempts enhance our
understanding of the effects of planning, they also leave open the question of which
plans are optimal in a more general context. We argue that the issue of planning effects
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can be approached through answering two related questions: (1) given the appropriate
information, how can we make better plans, and (2) given the completed plans, what
decision mechanisms are likely to bring about the objectives set by the plans? It is the
second question that is addressed here.

The two questions imply a distinction between plans and the underlying mecha-
nisms of how plans work. On the one hand, here plans are defined conceptually as
organized sets of interdependent contingent decisions in time and space and can take
different forms, either formally documented or informally conceived. On the other
hand, the underlying mechanisms of how plans work are not plans themselves, but
are the casual effects that plans can have on our actions and thus on the urban-
development process. Put differently, plans affect directly and indirectly how decisions
are made under different mechanisms that occur in the urban-development process. For
example, in negotiating with a developer wanting to invest in an area of land, a local
government refers to the master land-use plan to decide whether to grant development
permits to the developer. The process of deciding whether to grant the permits is the
mechanism through which the land-use plan functions. Thus, there can be different
mechanisms of how plans work, given this strict definition of plans, and we follow an
observation of Hopkins (2001) that plans can work as agendas, policies, visions, designs,
and strategies. An agenda is a list of things to do. A policy is an if — then rule. A vision is
an imagined future for motivating action. A design is a well-thought-through outcome
to aim for. A strategy is a contingent set of related decisions, a path in a decision tree.

In this paper, we focus on the policy aspects of plans. That is, instead of providing
a general approach to evaluating plans, we present an analytical model that compares
the effectiveness of different decision-making mechanisms through which the objectives
set externally by the completed plans are likely to be achieved.

The narrow metaphorical model we use to represent the mechanism of how plans
work and the associated decision situation is the well-known two-person iterated
prisoner’s dilemma game (see, for example, Axelrod, 1984). This dilemma game is
particularly useful in framing some planning-related situations because it addresses
whether two interacting parties would cooperate in order to provide collective goods.
For example, a developer when deciding whether to invest in land and a local govern-
ment when deciding how to regulate land use could be formulated as the two-person
iterated prisoner’s dilemma game, in that, because regulated development is a collec-
tive good and both the developer and the local government have incentives not to
cooperate, the best outcome, that is, regulated development, would not come about
without some coercive actions. Another example is the negotiation between the land
owners in a community and a local government in locating a NIMBY (not-in-my-
back-yard) facility, such as a landfill site. The best outcome would be for the local
government to make reasonable compensation to the landowners for locating the
facility near the affected community so that the landowners concur with the local
government’s plan. Since the landowners and the local government maximize their
self welfare and social welfare, respectively, and thus have no incentives to cooperate,
the outcome of collective goods is usually difficult to achieve without some coercive
actions. However, it is not clear in such situations which strategies, that is the sequence
of actions taken by one party in relation to the other party’s reactions, the local
government should adopt in order to enhance the welfare of the existing plan.

In a two-person iterated prisoner’s dilemma game, each player can either ‘defect’
or ‘cooperate’ at each encounter. The combination of the two players’ actions yields
different payoffs. There are four such combinations, namely, (C, C), (C, D), (D, C),
and (D, D), where C represents ‘cooperate’ and D represents ‘defect’, and the first and
second elements in the parentheses symbolize the actions taken by the first and second
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players, respectively, in each iteration. The resulting payoffs are arranged so that the
highest payoff is given to the player who defects while the other player cooperates and
then receives the lowest payoff. In addition, both players are better off when they
both cooperate than when they both defect. The structure of the payoff table forces
the two rational players to defect, but they would be better off if they could both
cooperate. Without a commitment, however, no player would run the risk of taking
the cooperate action because the other player would always tend to take the defect
action in order to gain. Thus, this situation is a dilemma. A two-person prisoner’s
dilemma game is said to be iterative when the two players encounter each other more
than once. This two-person iterated prisoner’s dilemma game has generated a large
amount of literature, mainly in the field of economics, concerning how cooperation
would emerge, and most of this work focuses on replicating, through experimental
settings and computer simulations, the conditions under which a particular interactive
strategy is superior (for example, Axelrod, 1984). Little has been deduced about
which strategy would yield the best outcome. Instead of delving into the theoretical
implications of the two-person iterated prisoner’s dilemma game, we use it here as a
metaphorical analytic tool to compare three regimes of policies, namely, fixed, emer-
gent, and no policies, in terms of the overall expected payoffs for a particular player
over time, assuming that the objective of maximizing the overall expected payoffs is
given externally by some plan.

In section 2 a simplified version of the two-person iterated prisoner’s dilemma
game is depicted, and we define the three regimes of policies in the light of this model.
In section 3 we compare deductively the effects of the three regimes of policies in terms
of the overall expected payoffs over time, both for limited and unlimited numbers of
iterations. Drawing on real planning situations, in section 4 some of the implications
and limitations of the model are discussed.

2 The simplified prisoner’s dilemma game and plans
The prisoner’s dilemma game has been explored thoroughly, mainly outside planning
literature (for example, Jones and Zhang, 2004; Rilling et al, 2002; Seale et al, 2006;
Sheldon, 1999; Stephens et al, 2002; Taiji and Ikegami, 1999; Yi et al, 2005). Most of
such work focuses on comparing interactive strategies in experimental settings, real
situations, and computer simulations, and explaining how cooperation emerges from
similar dilemmas (Axelrod, 1984; 1997; Rockenbach and Milinski, 2006). To the best of
our knowledge, no deductive proof has been provided to determine which strategy is
optimal. This is because there are an infinite number of combinations of payoffs that fit
the logic of the prisoner’s dilemma game. Nowak and May (1993) designed a simplified
version of the two-person iterated prisoner’s dilemma game that serves as a basis for
our deductive comparison. In their formulation, Nowak and May (1993) reduced the
payoff table of the two-person iterated prisoner’s dilemma game to one that contains
only one parameter as follows.

In the payoff diagram below, the values represent the payoffs received by each
player when player one (rows) takes a certain action, while player two (columns) takes
another action.

Cc D
ci1 0
DIb 0

For example, if player one cooperates and player two also cooperates, then player one
will receive a payoff of one. If player one defects while player two cooperates, then
player one will receive a payoff of b. For the simplified version of the two-person
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iterated prisoner’s dilemma game to be equivalent to the original one, » must be
greater than one, so that the Nash equilibrium settles on the combination of actions
where both players defect. The beauty of this simplified version of the two-person
iterated prisoner’s dilemma lies in its simplicity of reducing the analytic structure to
a single parameter b, while retaining the generalizability of the game situation. Note
that these payoffs are designed in order to manifest the logic of the prisoner’s dilemma
game and should not be taken literally as shown by payoffs of zero in the second
column. This simplified version of the two-person iterated prisoner’s dilemma game
allows us to formulate a mathematical proof in a succinct and efficient way.

Given the simplified structure of the two-person iterated prisoner’s dilemma game,
we define a policy as a decision rule of a sequence of actions to be taken in the ensuing
dynamic interactions of the two players over time. That is, a sequence of Cs or Ds
is derived from a policy for the encounters over time, such as CCDDCDCC ... .
In addition, we assume that the objective of each player is to maximize the overall
expected payoffs as given externally by an associated plan. There can be three regimes
of such policies, namely, fixed, emergent, and no policies. A fixed policy is a prede-
termined sequence of actions to be taken over time regardless of the action taken by
the other player in each iteration. An emergent policy is a contingent set of actions
taken in the light of the action taken by the other player in the previous iteration.
No policies implies that there is no orderly pattern or rule for how to take actions
over time. Equivalently, a policy is an if —then decision rule (Hopkins, 2001). For each
regime of policies, there can be an infinite number of sequences of actions that satisfy
the definitions. For example, any combinatory sequence of Cs and Ds is a fixed plan;
any contingent rule for taking actions can be an emergent policy; and a regime of no
policies implies any probability distribution of taking certain actions.

In order to compare the effectiveness of the three regimes of policies, we select a
representative policy for each regime, namely, the four strategies always defect (AD),
always cooperate (AC), tit for tat (TFT), and random actions (RA). AD means to
cooperate in the initial iteration, and once the other player defects in the current
iteration, always defect in the subsequent iterations. AC means to cooperate in all
encounters, regardless of what actions the other player takes. TFT means to cooper-
ate in the initial iteration, and then respond by following the other player’s action in
the previous iteration. RA simply means to take any action arbitrarily in each
iteration with a certain probability distribution. Intuitively, TFT and AD represent
the best strategies in the emergent and fixed regimes, respectively, because TFT is
found to be the best through computer simulations (Axelrod, 1984) and AD avoids
the possibility of being exploited. Whether RA is the best in its regime depends on the
probability distribution selected, but we assign the same probability distribution of
taking actions across the policies in the different regimes for the purpose of compar-
ison. Therefore, the four policy types are sufficiently distinctive to characterize the
three regimes of policy, and comparing them deductively should yield insight into
which regime of policies would be more effective. Table 1 summarizes the definitions
of the four policy types.

3 The deductive comparisons

In order to compare the effects of the four policies, we formulate first, in general terms,
the overall expected payoffs for player one based on the simplified game situation, and
then make pairwise comparisons of these four policies in terms of the overall expected
payoffs to determine the rankings of these policies. There are two situations—a limited
number of iterations and an unlimited number of iterations. For each computation of
the overall expected payoff for the particular player, we assume that in each iteration
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Table 1. Definitions of the four policies tested.

Strategy Definition of strategy Regime of policy

AD (always defect) Cooperate in the initial iteration, and once the Fixed
other player defects in the current iteration,
always defect in the subsequent iterations.

AC (always cooperate) Cooperate in all encounters, regardless of what Fixed
actions the other player takes.

TFT (tit for tat) Cooperate in the initial iteration, and then Emergent
respond by following the other players’
action in the previous iteration.

RA (random actions) Take any action arbitrarily in each iteration No policies
with a certain probability distribution.

the probabilities that player one cooperates and defects are p and 1 — p, respectively,
and that player two cooperates and defects are ¢ and 1 — ¢, respectively, where 0 < p,
g < 1. Let k denote the number of iterations. Let (r, s), stand for a combination of
the actions taken by player one (action r) and player two (action s) in iteration k
respectively, where r, s € {C, D} and C and D denote cooperate and defect, respec-
tively. A strategy is a sequence of actions taken by a particular player over time, which
is distinct from a policy of if —then decision rules for that player.

3.1 The case of a limited number of iterations

3.1.1 Evaluation of TFT

For TFT, when k = 1, indicating the initial iteration, player one cooperates with the
probability of one, whereas player two can either cooperate or defect with probabilities of
q and 1 — ¢, respectively. The possible combinations of actions in this iteration are
(C, C), and (C, D),. Referring to figure 1, where the paths with bold lines are permissible
under the definition of TFT, the expected payoff for player one at this stage is

(IxgxD+[Ix(1—¢g)x0 = q. 1)

Note that the resulting payoffs are given at the end of leaves in each iteration.

When k = 2, given the definition of TFT and if player two cooperates in iteration
one, then player one will cooperate in iteration two with a probability of one; other-
wise, player one will defect with a probability of one. Referring to figure 1, there are
four possible combinations of sequential actions in iteration two, that is, [(C, C),,
(C, C)), [(C, C),, (C, D),], (C, D),, (D, C),], and [(C, D),, (D, D),], and the overall
expected payoff for player one in iteration two is

(Ixgx1IxlIxgx)+[Ixgxlx(l—¢g)x0]+[lx(l—-¢g)x1xgxDb]
+[Ix(1=g)x1x(1—¢g)x0] = ¢°+gb—q°b . ®)

In the same way, when k = 3 there are eight possible combinations of sequential actions
in iteration three, and the overall expected payoff for player one in this iteration is

(Ixgxlxgxlxgxl)+[Ilxgxlxgxlx(l—gq)x0]
+Ixgx1Ix(1—g)x1xgxb+[IlxgxlIx(l—¢g)x1x(l—g)x0]
+Ix(l—¢g)xIxgxlxgxl]+[Ix(1—¢g)x1xgx1x(l—gq)x0]
FIx(1=-¢g)x1Ix(1—-¢q)x1xgxDb]
+x(I=g)x1x(1=¢)x1x(1=¢g)x0] = ¢>+qgb—q°b . A3)
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Figure 1. The game tree of tit for tat in the two-person iterated prisoner’s dilemma game for
iterations k£ = 1 and 2. C = cooperates; D = defects; p is the probability player one will cooper-
ate and ¢ the probability that player two will cooperate; b is a payoff value > 1.

It can be proved, as shown in the appendix, that when k = n the expected payoff
for player one in iteration nis 7, = ¢7,_, + (1 —¢)T,_, = T,_,, and we have

q, n=1
I, = 2 2 :

g +gb—qb, n =2
Let S, be the sum of the expected payoffs for player one across the iterations up to #,
and we have

S, = q+ (> +qb—q’b)(n—1) . @)

3.1.2 Evaluation of AD

For AD, player one cooperates initially with the probability of one, and will keep
defecting once player two defects. When k = 1 player one cooperates initially, and there
are two possible combinations of actions (C, C), and (C, D),. The overall expected
payoft for player one in this iteration is

(Ixgx)+[Ix(1—-¢g)x0] =gq. Q)

If player two defects in iteration one, then player one will defect in return in iteration
two with a probability of one. Starting from iteration two, player two, noticing that
player one defected in iteration one and to avoid being exploited, will also defect
in the following iterations, and the process enters into a punishment phase where
both players defect (Dixit and Skeath, 2002). According to this scenario, when k = 2
the possible combinations of sequential actions are [(C, C),, (C, C),], [(C, C),,
(C, D),, and [(C, D),, (D, D),], and the overall expected payoff for player one in
iteration two is

(IxgxIxgx)+[IxgxlIx(1—g)x0+[Ix(1-¢g)x1x1x0 = ¢°.(6)
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When k =3 there are four possible combinations of sequential actions, and the
expected payoff for player one in iteration three is

(Ixgxlxgxlxgxl)+[Ilxgxlxgx1lx(l—gq)x0]
+[Ixgx1Ix(1=¢)xIx1x0+[Ix(l-g)x1x1Ix1x1x0] = ¢°. (7)
Let P, denote the expected payoff in iteration n. It can be proved, as shown in the

appendix, that P, = gP, | +[(1 —¢q) x 0] = ¢". Let S, denote the sum of the expected
payoffs across iterations up to n, and we have

q(1 —¢")
l—q
3.1.3 Evaluation of AC
Under the AC policy, player one always cooperates with a probability of one, regardless
of the action taken by player two in the previous iteration. When k& = 1 there are two

possible combinations of actions, (C, C), and (C, D),, and the expected payoff for
player one in this iteration is

(IxgxD+[Ix(1—q)x0] = ¢ . )

When k =2 there are four possible combinations of sequential actions, namely,
[(C’ C)ls (Cs C)Z]’ [(Ca C)l’ (Cr D)Z]a [(C’ D)la (Cs C)2]s and [(Cs D)la (C’ D)Z]
The expected payoff for player one in iteration two is

S =

V4

®)

(Ixgx1lxgx)+[IxgxlIx(l—¢g)x0]+[lx(l—¢g)x1xgqgxI1]

+[Ix(l—¢g)x1Ix(l—¢g)x0] = ¢q. (10
The expected payoff for player one in iteration three is

(Ixgxlxgxlxgxl)+[Ilxgx1lxgxlx(l—gq)x0]
FIxgxlIx(1—g)x1xgx1]+[1xgx1Ix(l—¢q)x1x(l—g)x0]
+FIx(l=—¢gxIxgxlxgxl]+[1x(1—g)x1xgx1x(l—g)x0]
+Ix(l—¢g)x1x(1—-¢g)x1xgxl]
+IxI=-gxIx(1-¢gxlx(1-¢q)x0 = q. 11)

Let F, denote the expected payoff for player one in iteration n, and it can be proved,
as shown in the appendix, that F, = gF, | +(1 —q)F, | = F,_| = gq. Let S, denote the
sum of the expected payoffs for player one across iterations up to n, and we have

S, = nq . (12)

3.1.4 Evaluation of RA
Under the RA policy, both players either defect or cooperate with probabilities p or
1 —p and g or 1 — g, respectively. When k& = 1 there are four possible combinations of
actions, namely, (C, C),, (C, D),, (D, C),, and (D, D),. The expected payoff for player
one in this iteration is

(pxgx1)+[px(1—=¢)x0]+[(1—p)xgxb+[(1-p)x(l-g)x0]
= pq+qb—pgb . (13)

When k =2 there are 16 possible combinations of sequential actions. These are
[(C’ C)I s (C» C)Z]s [(Cr C)ls (Ca D)z]a [(Cs C)ls (Dr C)Z]r [(Cs C)la (D> D)Z]a [(Cs D)]»
(Ca C)2]9 [(C’ D)l’ (C’ D)z]: [(C’ D)19 (D’ C)Z]a [(Ca D)19 (D’ D)Z]) [(Da C)lﬂ (C’ C)Z]a
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[(D’ C)lv (Ca D)Z]) [(Da C)lﬂ (D, C)Z]a [(Da C)l’ (Da D)2]7 [(D’ D)lﬂ (Ca C)Z]) [(Da D)la
(C, D)1, (D, D),, (D, C),], and [(D, D),, (D, D),]. The expected payoff for player one
in this iteration is

(pxgxpxgx1)+[pxgxpx(l—q)x0]+[pxqgx(l—p)xgqgxb
+ [pxgx(1=p)x(1-¢q)x0]+[px(1-¢q)xpxgxl]
px(I—q)xpx(l—¢q)x0]+[px(1-¢q)x(l—-p)xqgxbh]

+ [
+px(I=g)x(1=p)x(1=¢q)x0]+[(1=p)xgxpxqgxl]
+ [(T=p) xgxpx(1=q]x0+[(1=p)xgx(1=p)xqgxb
+[(T=p)xgx(1=p)x(1=q)x0+[1—-p)x(1-¢)xpxqgxl]
+[(T=p)x (T =g) xpx(1=g) x0+[(1—-p)x(1—=¢)x(1=p)xqgxb]
+[A=p)x (A =¢g)x (1 =p)x (1 =q) x0] = pg+qb—pgb . (14)
When k = 3 the expected payoff for player one in this iteration is also
(pq+4qb —pqb) . (15)
Let M, denote the expected payoff for player one in iteration 7, and it can be proved, as
shown in the appendix, that M, =M, , =M,_, =...=M, =M, = pq+ gb — pgb.
Let S,, denote the sum of the expected payoffs across iterations up to », and we have
S, = n(pq+qb—pgb) . (16)

Table 2 summarizes the evaluation results of the four strategies.

Table 2. Evaluation results of the four strategies.

Strategy Sum of the expected payoffs across Equation
iterations up to n

TFT (tit for tat) S, = q+(q*+qb—g*h)(n—1) )
1 _ n

AD (always defect) S, = "(TZ) )

AC (always cooperate) S, = nq (12)

RA (random actions) S,, = n(pq+ qb — pgb) (16)

Note. p and ¢ are the probabilities that player one and player two, respectively, cooperate, and
b is a payoff value >1.

3.1.5 Pairwise comparison between TFT and AD

Given these generalized formulae for the overall expected payoffs for player one for
each of the four policies, we can compare these payoffs in pairs to determine the
rankings of the four policies in terms of the overall expected payoffs. The pairwise
comparisons are conducted through the logic of induction. Consider first the TFT and
AD strategies. When k =2 the difference between the overall expected payoffs for
player one is given by equations (2) — (6), that is,

(¢°+qgb—q’b)—q° = gb(1—gq) , (17)

which is positive because 1 — ¢ > 0, and it can be concluded that TFT is better than
AD in terms of the overall expected payoff for iteration two.
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Assume that the payoff difference between TFT and AD derived from equations (4)
and (8) is positive when k = n, that is,

1 _ n
S-S, = q+(q2+qb—q2b)(n—1)—q(lfg)>0. (18)
When k =n+ 1 this difference between the overall expected payoffs for player one
derived from TAT and AD is equal to

1_ n R
q+(qz+qb—q2b)(n—1)+(q2+qb—q2b)—7q(l_Z ) _ g
q(1—4")

= +(q*+gb—q’b)—q""" .

= |g+ (> +gb—¢’b)(n—1)—
This can be rewritten as

[ 1—-q" | n—
q+(q2+qbfq2b)(n71)fq(lfg) +qg(1 —¢"~") +qb(1 - q)] ,
and because

) LT
1+(q2+qb—q2b)(n—1)—% >0,(1—¢""")>0, and (1-¢) >0,

q
we can see that it is positive. Thus we have
Cgl—g")]

q+(q*>+qb—q’b)(n—1)

Yy +qlg(1 —¢""") +qb(1—¢)] > 0. (19)

Based on the logic of induction, we have proved that TFT is better than AD in terms
of the overall expected payoff for player one.

3.1.6 Pairwise comparison between TFT and AC

For the comparison between TFT and AC, when k =2 the difference between the
overall expected payoffs derived from the two policies, given equations (4) — (12) for
n=21s

g+ (@ +qb—q’b)—q—q = gx(¢—1)(1-b) . (20)

By assumption (1 — ) < 0, and (¢ — 1) < 0, therefore the payoff difference expressed
in equation (20) is positive, meaning that TFT is better than AC in terms of the overall
expected payoff for player one when k = 2.

Assume that the payoff difference between TFT and AC derived from equations (4)
and (12) is positive when k = n, that is,

q+(q*+qgb—q’b)(n—1)—ng > 0 . @1
When k = n + 1 the difference in payoffs for player one is

q+(q” +qb—g’b)(n) — (n+1)g

= g+ (" +gb—q’b)n—1)+(¢"+9b—q’b) —ng—q .

Rewriting this, and because we know from equation (21) that

[¢+(q* +qb—¢’b)(n—1) — ng] > 0
and from equation (20) [(¢*> + gb — ¢°b) — q] = (b — 1)(¢ — ¢°) > 0, we have

[4+(a° +ab—q’b)(n—1) —ngl +[(¢° +qb—¢’b) —q] > 0 . (22)
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Based on the logic of induction we can conclude that TFT is better than AC in terms
of the overall expected payoff for player one.

3.1.7 Pairwise comparison between TFT and RA
For the comparison between TFT and RA, when k = 2 the payoff difference between
equations (4) and (16) for n = 2 is

q+(q°+qb—q°b) —2(pg+qgb—pgb) = gx (1—b)x (1+q—2p) . (23)

Assume that (1 + ¢) < 2p and because (1 — ») < 0, wehave g x (1-b) x (1 +¢g —2p) >0,
meaning that TFT is better than RA in terms of the overall expected payoff for player
one when k = 2.

Let the payoff difference be positive when k& = n, that is,

S, =S, = q+(4°+qgb—q’b)(n—1) —n(pqg+qb—pgb) > 0 . (24)
When kK = n + 1 we have
S, =S, = q+(q°+qb—q’b)(n) — (n+1)(pg + gb — pgb)

[¢+ (¢ +ab— q*b)(n — 1) — n(pq + qb — pqb)]
+ (¢° +qb—q’b) — (pq +qb — pgb) .
This payoff difference can be rewritten as follows and, because equation (24) is
positive, (14 ¢) < 2p and thus p > (1 +¢)/2 > ¢ so that (¢ — p) < 0 and by definition
(1 —=2) <0, we have

[¢+ (¢ +qb—q*b)(n — 1) = n(pq + gb — pgb)] + ¢(1 = b)(¢ —p) > O . (25)

This leads to the conclusion, through the logic of induction, that TFT is better than
RA in terms of the overall expected payoff for player one.

3.1.8 Pairwise comparisons between RA and AC
For the comparison between RA and AC, when k = 2 the payoff difference under the
two policies can be expressed as S,, — S, for n = 2, that is,

2(pq+4qb—pgb) —2q = 2q(p—1)(1 —b) , (26)
which is positive because, by definition, (1 — b) < 0 and (p — 1) < 0. This means that
RA is better than AC in terms of the overall expected payoff for player one when
k=2.

Let the payoff difference be positive when k = n, that is,

S, =8 = n(pq+qb—pgb)—ng > 0 . 27
When k = n + 1 the payoff difference becomes

(n+1)(pg+qb—pgb) —(n+1)qg = (n+1)g(p—1)(1-b) > 0. (28)

We can conclude, based on the logic of induction, that RA is better than AC in terms
of the overall expected payoff for player one.

3.1.9 Pairwise comparison between AC and AD
For the comparison between AC and AD, when k = 2 the payoff difference under the
two policies is

(g+q)—(g+q°) = g—q°> > 0. (29)
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Therefore, AC is better than AD in terms of the overall expected payoff for player one
when k& = 2. Now, let the inequality obtain when k = n that is

1 _ n
S, — S, :nq—%>0. (30)
When k = n + 1 the payoff difference between AC and AD changes to
1—q" .

As before, we rewrite this and because [ng — ¢(1 — ¢")/(1 — ¢)] > 0 and (g — ¢""") > 0,
we have

(nq—"(ll—g)) tlg-g") > 0. a1
Based on the logic of induction, we can conclude that AC is better than AD in terms
of the overall expected payoff for player one.

We have proved through the pairwise comparisons that the ranking of the four
policies in terms of the overall expected payoff for player one in descending order is
TFT, RA, AC, and AD. Table 3 summarizes the evaluation results of the five pairwise
comparisons in the case of a limited number of iterations.

Table 3. Evaluation results of the pairwise comparisons of payoffs for player one with a limited
number of iterations.

Strategies compared Payoff difference for player one in iteration n + 1 Inequality
2 1- "
TFT versus AD g+ @G> +qb—qg*b)(n—1)— g (19)
+ qlg(l —¢"" )+ gb(1 = g)] > 0
TFT versus AC lg+(q* +gb—g*b)n—1) —ngl +[(¢* +qb—q’h) —q] >0 (22)
TFT versus RA [q+ (¢ + gb — ¢°b)(n — 1) — n(pq + qb — pqh) (25)
+q(1=b)g—p) >0
RA versus AC (n+1)(pg+gb—pgb) —(n+1)qg > 0 (28)
1 _ n
AC versus AD [(n+1)q7¥fq”“} 31)

q(1—¢" "

Note. TFT = tit for tat; AD = always defect; AC = always cooperate; RA = random actions.
p and ¢ are the probabilities that player one and player two, respectively, cooperate, and b is a
payoff value >1.

3.2 The case of an unlimited number of iterations
In this section, the case of an unlimited number of iterations is considered for pairwise
comparisons of the four policies.

3.2.1 Pairwise comparison between TFT and AD

For the comparison between TFT and AD, when k = n we know that the payoff difference
under the two policies is given in equation (18). When n — oo, implying an unlimited
number of iterations, the payoff difference between TFT and AD is expressed as

q(1—¢q")

Jim 1g+(4" b= gD —1) = =g =
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where
lim [g+(¢"+gb—g’b)(n—1)] = lim{g+[q*+b(g—¢")](n—1)} . (32)

Because 0 < ¢ < 1, we have 0 < ¢* < 1 and (g — ¢*) > 0. Thus
Tim {g+ [¢* +b(g — ¢")](n— 1)} — oo .

In addition, because

im 41 —4") _ 4
n—oo 1 —gq 1—g¢g
i1s a constant, we have
]7 n
lim q+(q2+qb—q2b)(n—l)—q(17q) - oo—li >0, (33)
n—oo —q —q

which implies that TFT is better than AD in terms of the overall expected payoff for
player one when the number of iterations is unlimited.

3.2.2 Pairwise comparison between TFT and AC

For the comparison between TFT and AC, we know that the payoff difference under
the two policies is given in equation (21). When n — oo, the limit of this payoff
difference is expressed as

lim[g + (q° + gb — ¢*b)(n — 1) = nq] .
Because n — oo, this can be rewritten as

lim [(q°+ gb — ¢*b)n — nq) = lim [n(q°+ gb —q*b —q)] = lim n(b—1)(¢ —¢") .
By deﬁo;ition, (b—1)>0and (¢ — q;)c > 0 and as a result we haV:

lim g+ (¢" +qb—q’b)(n—1) —ng] > 0 . (34)

We conclude that TFT is better than AC in terms of the overall expected payoff for
player one when the number of iterations is unlimited.

3.2.3 Pairwise comparison between TFT and RA
For the comparison between TFT and RA, the payoff difference for k = n is given in
equation (24). When n — oo, this payoff difference becomes

lim [g+ (¢° +gb — q°b)(n — 1) — n(pq + gb — pqb)]
= lim[g — (¢ +qb — q’b) +n(q” + qb + ¢’b — pq — qb + pgb)]
= limlg—(¢°+gb—gb) + n(b ~ 1)(pg —¢°)] -

g — (¢> + gb — ¢°b)] is a constant, and [n(h — 1)(pg — ¢*)] > 0 because b > 1 and
1+ ¢q < 2p, so that p > (14 ¢)/2 and thus pg > (¢ +¢°)/2 > ¢°.

lim [g+ (¢” + gb — ¢°b)(n — 1) = n(pq + gb — pgh) > 0 . (39)

Hence, from above we can conclude that TFT is better than RA in terms of the overall
expected payoff for player one when the number of iterations is unlimited.

3.2.4 Pairwise comparison between RA and AC
For the comparison between RA and AC, the payoff difference for &k = n is given in
equation (27). When n — oo, the payoff difference can be expressed as

lim [2(pg + b — pgb) — (ng)] = lim [ng(p —1)(1 =b)] .
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This tends to oo because 0 < p < 1, b > 1, and both are constants. Thus

lim [n(pg + gb — pgb) — (ng)] > 0 (36)

and we can conclude that RA is better than AC in terms of the overall expected payoff
for player one when the number of iterations is unlimited.

3.2.5 Pairwise comparison between AC and AD
For the comparison between AC and AD, the payoff difference when k = n is given in
equation (30). When n — oo, that payoff difference can be expressed as

l _ n
because as n — oco ng — oo, whereas ¢(1 — ¢")/(1 — ¢) is a constant. Thus
1 _ n
lim [nq—M} >0, (37)
n— oo — q

and we can conclude that AC is better than AD in terms of the overall expected payoff
for player one when the number of iterations is unlimited.

In short, in the case of an unlimited number of iterations, the ranking of the four
policies in descending order in terms of the overall expected payoff is TFT, RA, AC,
and AD, which is consistent with the ranking in the case of a limited number of
iterations. Table 4 summarizes the evaluation results of the five pairwise comparisons
in the case of an unlimited number of iterations.

Table 4. Evaluation results of the pairwise comparisons of payoffs for player one with an
unlimited number of iterations.

Strategies compared  Payoff difference for player one in iteration n — oo Inequality
- 2 2 q(1-¢")
TFT versus AD lim|g+ (¢ +gb—qb)(n—1)— T >0 (33)
TFT versus AC lim [¢q+ (¢* +gb — ¢*P)(n— 1) —ng] > 0 (34)
TFT versus RA lim [g + (> + gb — ¢*b)(n — 1) — n(pg + gb — pgh)] > 0 (35)
RA versus AC lim [n(pg + gb — pgb) — (ng)] > 0 (36)
] _ n
AC versus AD lim {nq —q(]fg)} >0 37

Note. TFT =tit for tat; AD = always defect; AC = always cooperate; RA = random actions.
p and ¢ are the probabilities that player one and player two, respectively, cooperate, and b is a
payoff value >1.

4 Discussion
We have shown that TFT is better than RA only under the condition that (1 4+ ¢) < 2p
or p > (14 ¢q)/2 > q. This condition sets a behavioral constraint on p and because
0<¢g<1l, p>(+g¢g)/2 = 0.5 implying that player one is more inclined to coop-
erate than to defect and that player one’s inclination to cooperate is greater than player
two’s. Cooperation seems to be a useful action, when taken appropriately, even when
faced with an opponent who is less cooperative.

Intuitively, AD seems better than AC because AD avoids being exploited by the
opponent and AC runs the risk of being exploited. The comparisons show, however,
that AC is better than AD. This conclusion is derived, on the one hand, from the
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behavioral assumption that when player one adopts the AD policy, player two will
defend himself or herself by taking the defect action, reducing player one’s overall
expected payoff. On the other hand, if player one adopts the AC policy, player two is
free to cooperate or defect with probabilities of ¢ and 1 — ¢, respectively, increasing
player one’s overall expected payoff compared with the AD policy. If we assume
that player two will always defect when player one adopts the AC policy, then AD
might be better than AC under this behavioral assumption. In addition, the overall
expected payoff is computed from the point of view of a particular player. It is easy to
compare these policies in terms of the sum of the overall expected payoffs of both
players. This way, it would be positive to assess which policies are more effective in
enhancing social welfare. Nevertheless, the comparative approach depicted in this
paper provides a useful way to analyze deductively the effectiveness of different policies
in the two-person iterated prisoner’s dilemma game.

On the basis of the distinction between the definition of plans and the underlying
mechanisms of how plans work, this paper does not address directly the issue of
measuring the effectiveness of plans and how we should make better plans. Instead,
it shows that given an external planning objective of maximizing the overall expected
payoff of a player, when faced with the situation reminiscent of the two-person iterated
prisoner’s dilemma game, the best strategy for the player to adopt is TFT. The player
may well be a local government in negotiation with land owners on the location of a
NIMBY facility or with a developer on the granting of development permits, and the
payoff for the local government may be either social welfare or votes, depending on
how the planning situation is perceived by the local government. The implications of
the mathematical analysis are, however, that measuring completely the effectiveness
of plans is an almost inextricable issue both analytically and empirically, and that in
order to do so, we need to take into account the evaluation of both making plans and
how such plans work under different mechanisms. The model and the associated
findings provide a starting point to address this issue analytically.

5 Conclusions

We have proved mathematically that TFT is the best of the four commonly used
strategies, the others being AC, AD, and RA, in the two-person iterated prisoner’s
dilemma game. Viewing these strategies defined in game theory as representative
policies in the three regimes of fixed, emergent, and no policies, the implication is
that emergent policies that take into account contingencies are the most effective in
terms of the overall expected payoffs. The model shows a starting approach to the issue
of evaluating the potential effects of plans.

Acknowledgements. The authors thank Professor Lewis D Hopkins from the Department of Urban
and Regional Planning at the University of Illinois, Urbana-Champaign for his helpful comments
on clarifying the ideas of plans and policies.

References

Axelrod R, 1984 The Evolution of Cooperation (Basic Books, New York)

Axelrod R, 1997 The Complexity of Cooperation: Agent-based Models of Competition and
Collaboration (Princeton University Press, Princeton, NJ)

Cohen M D, March J G, Olsen J P, 1972, “A garbage can model of organizational choice”
Administrative Science Quarterly 17 1-25

Dixit A K, Skeath S, 2002 Game of Strategy (W W Norton, New York)

Hopkins L D, 2001 Urban Development: The Logic of Making Plans (Island Press, Washington, DC)

Intriligator M D, Sheshinski E, 1986, “Toward a theory of planning”, in Social Choice and Public
Decision Making Eds W Heller, R Starr, D Starrett (Cambridge University Press, Cambridge)
pp 119-170



808 C-P Chiu, S-K Lai

Johnson D A, 1996 Planning the Great Metropolis: The 1929 Regional Plan of New York and its
Environs (Routledge, London)

Jones M, Zhang J, 2004, “Rationality and bounded information in repeated games, with application
to the iterated prisoner’s dilemma” Journal of Mathematical Psychology 48 334 —354

Knaap G J, Hopkins L D, Donaghy K P, 1998, “Do plans matter? A framework for examining the
logic and effects of land use planning” Journal of Planning Education and Research 18 25 —34

Lai S-K, 1998, “From organized anarchy to controlled structure: effects of planning on the garbage-
can decision processes” Environment and Planning B: Planning and Design 25 85—102

Lai S-K, 2003, “Effects of planning on the garbage-can decision processes: a reformulation and
extension” Environment and Planning B: Planning and Design 30 379 — 389

Nowak M A, May R M, 1993, “The spatial dilemmas of evolution” Journal of Bifurcation and
Chaos 335-178

Rilling J K, Gutman D A, Zeh T R, Pagnoni G, Bern G S, Kilts C D, 2002, “A neural basis for
social cooperation” Neuron 35 395 —405

Rockenbach B, Milinski M, 2006, “The efficient interaction of indirect reciprocity and costly
punishment” Nature 444 718 —723

Seale D A, Arend R J, Phelan S, 2006, “Modeling alliance activity: opportunity cost effects and
manipulations in an iterated prisoner’s dilemma with exit options” Organizational Behavior
and Human Decision Processes 100 60— 75

Sheldon K M, 1999, “Learning the lessons of tit-for-tat: even competitor can get the message’
Journal of Personality and Social Psychology 77 12451253

Stephens D W, McLinn C M, Stevens J R, 2002, “Discounting and reciprocity in an iterated
prisoner’s dilemma” Science 298 2216 —2218

Taiji M, Ikegami T, 1999, “Dynamics of internal models in game players” Physica D 134 253 —266

Talen E, 1996, “Do plans get implemented? A review of evaluation in planning” Journal of Planning
Literature 10 248 — 259

YiR, Johnson M W, Bickel W K, 2005, “Relationship between cooperation in an iterated prisoner’s
dilemma game and the discounting of hypothetical outcomes” Learning and Behavior 33
324-336

Appendix
Let 7, denote a subtree in the game tree TFT for iteration k. Referring to figure 1,
it can be observed easily from the game tree that the following recursive expected
payoff functions obtain:
I =4ghL+(0-9hL = Ty,
L =qL+(1-9)T, = T; ,
T, = 9T, +(1-q)T,_, = T,
Therefore, for TFT, 7, =T, , =T, ,=...=T, =T, =q* +gb—¢’b for n > 2.
Let P, denote a subtree in the game tree of AD for iteration k. The recursive
expected payoff functions are:

P, = gP,+(1—¢q)0 = ¢qP,, where P, = ¢ ,
Py = qP, +(1-q)0 = gP, ,
P, = gP,_,+(14+¢)0 = qP,_, = ¢"(V¥n € N) .

Let F, denote a subtree in the game tree of AC for iteration k. The recursive
expected payoff functions are:

K =qh+(1-9F = K ,
FE =qb+(-qF = F
F, = qF +(1-qF, , = F_,
Therefore, F, =F, , =F, ,=...=FE=FE =F =q¢x1+(1—¢)x0 = q.
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Let M, denote a subtree in the game tree of RA for iteration k. The recursive
expected payoff functions are:

M, = pgM, +p(1 —g)M, + (1 = p)gM, + (1 —p)(1 — q)M,
= pM[g+ (1 = q)]+ (1 —p)M,[q+ (1 — q)]
pM, +(1—=p)M, = M, ,

M

n

=M, , =M, , =...=M =M = M,

n—1 n—2

= pgx1+(1—=p)xgxb = pg+qb—pgb .

p © 2008 Pion Ltd and its Licensors
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