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Planning in Complex Spatial and Temporal

Systems: A Simulation Framework

Shih-Kung Lai and Haoying Han

Introduction

Planners are confident that their planning affects not only behaviors in organi-

zations, but also outcomes. There is, however, little backing for this confidence.

Surprisingly little is known about planning processes and how they affect organi-

zations. One approach to gaining understanding of planning behaviors in organi-

zations is to develop and analyze simulation models. The framework presented here

builds on two streams of previous work: the garbage can models of organizational

behavior presented by Cohen et al. (1972) and the spatial evolution models of

Nowak and May (1993). Our objective is to develop a framework sufficient to

investigate the implications of introducing planning behaviors into complex orga-

nizational systems evolving in space and time. Our primary focus for this chapter is
on devising simulations from which we might discover general principles about the

effects of planning the behavior of organizations. Additional work will be necessary

to determine the external validity of these simulations, that is, to interpret concrete

situations in terms of such principles.

We focus on the planning activities of considering related choices (Hopkins

2001), setting aside for this chapter planning with respect to uncertainty about

planning objectives, environments, and available alternatives. Information that

reduces uncertainty arises from some regularity about observed phenomena that

permits prediction across actors, space, or time. The level of planning investment

can be measured by the number of comparisons and judgments made in gathering
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information about related choices while making a plan, as manifested by the mani-

pulation of these choices. Plans are sets of decisions, which are contingent on

outcomes resulting from prior decisions and system behavior based on exogenous

parameters. Plans persist in time and space. As decisions become actions yielding

outcomes, further contingent decisions can be enacted. These contingent decisions

are, however, part of the persistent plan. Revising a plan thus implies changing the

contingencies on which ensuing decisions are based.

We construct the elements of this simulation framework in sequence. Planning is

understood here as gathering information to reduce uncertainty (e.g., Friend and

Hickling 2005; Schaeffer and Hopkins 1987). Section “Planning Behaviors in the

Planning Process” explains the garbage can model and develops one definition of

planning as manipulation of decision situations within that framework. Section

“Incorporation of Spatial Relationships” explains the spatial process of urban

modeling and the spatial framework in terms of evolutionary planning behavior

in a prisoner’s dilemma game. Section “Idea for Integrating the Garbage CanModel

with a Spatial Evolution Game for Planning Simulation” introduces an idea of how

these two types of models can be integrated and the questions that might be

addressed by analysis of such simulations. Section “Conclusions” concludes.

Planning Behaviors in the Planning Process

As everyone knows, scientific technology is developing day and night. Since

computer models have emerged, there are various models developed for scientific

research.While one of them, namely agent-based modeling (ABM) has been proven

to be an effective way to simulate activities in which entities participate (Torrens

2007). This kind of simulation is expected to provide a valuable tool for exploring

the effectiveness of policy measures in complex environments (Jager and Mosler,

2007; Jager 2007). Before discussing planning the behavior of organizations and its

effects on a complex urban society, we should take a retrospective glance reviewing

the current research on ABM with respect to urban social systems.

Agent-Based Modeling

ABM for Planning Support Systems

In the last decades, influenced by rapid urbanization, the relationships between

policies, the location and intensity of urban activities, and related urban environ-

mental problems have become a hot topic for planners and researchers (Chin 2002;

Ewing 1994, 1997; Neuman 2005). This research is always carried out using

statistical analysis or investigated in ways such that the variability of entities’

activities and the influences between different entities cannot been represented

74 S.-K. Lai and H. Han



particularly well. When computer models were first constructed for urban systems,

they were built for testing the impacts of urban plans and policies rather than for

scientific understanding purposes (Batty 2008). The basic argument was that given a

good theory, a model would be constructed based on it, which would then be

validated and, if acceptable, used in policy making (Batty 1976). Topical examples

can be gleaned from urban growth simulations, in which the spatial process of urban

growth can be visualized and represented in a very realistic way using cellular

automata (CA) models. These can be used to support decision-making (Batty et al.

1997, 1999; Clarke and Gaydos 1998;Wu 2002; Li and Yeh 2000; Fang et al. 2005).

Now ABM is becoming the dominant paradigm in social simulations due

primarily to its priority on reflecting agents’ choices in complex systems.

Researchers employ ABM for planning support and decision-making on urban

policies. One example is a role-playing approach introduced by Ligtenberg, in

which a complex spatial system including a multi-actor spatial planning process

can be simulated for spatial planning support (Ligtenberg et al. 2010). Furthermore,

in regard to the highly complex process of making urban policy decisions, a multi-

agent paradigm has been built to develop an intelligent and flexible planning

support system, within which three types of agents, including interface agents

who improve the user–system interaction, tool agents to support the use and

management of models, and domain agents to provide access to specialized knowl-

edge, were created (Saarloos et al. 2008). Researchers also utilize ABM to simulate

urban development processes. As described by a CityDve model, the economic

activities of agents (e.g., family, industrial firms, and developers) that produce

goods by using other goods and trade their goods on the markets have been

simulated to visualize urban development processes resulting from urban policies

(Semboloni et al. 2004).

In China, one of the countries around the world whose urbanization is taking

place at an unprecedented rate, the conflict between human activities and urban

environments is very serious. Agent-based simulation has easily gained much

attention from Chinese researchers. Some of these researchers have improved

traditional urban growth models by building up a set of spatial-temporal land

resource allocation rules and developing a dynamic urban expansion model based

on a multi-agent system (MAS) to simulate the interactions among different agents,

such as residents, farmers, and governments (Zhang et al. 2010). This work is able

to reflect basic urban growth characteristics, explain the reasons for the urban

growth process and explain the effects of agents’ behavior on urban growth.

MAS simulations have shown a higher precision than cellular automata models,

which suggests that these models could provide land use decision-making support

to government and urban planners. Meanwhile, other researchers have focused on

solving urban transportation problems using ABM. One example is a qualitative

model of a multi-lane environment that has been built to simulate several cars

acting in a multi-lane circuit (Claramunt and Jiang 2001). This work is an illustra-

tive example of a constrained frame of reference. The potential of this model is that

it was illustrated and calibrated using an agent-based prototype, within which the

modeling objects were individual cars.
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Residential Motility Simulation

In a study of ABM challenges for geo-spatial simulation, seven challenges for ABM

work were illustrated, including the purpose of model building, the independent

theory of model rooting-in, and interactions among agents (Crooks et al. 2008).

Within this work ABMs have been utilized to model different urban systems

problems, such as residential location, urban emergence evaluation, and residential

segregation. Similar studies have been carried out on this topic such as a MASUS

model (Multi-Agent Simulator for Urban Segregation) which provides a virtual

laboratory for exploring the impacts of different contextual mechanisms on the

emergence of segregation patterns (Feitosa et al. 2011). A population dynamic

model in which inhabitants can change their residential behavior depending on

the properties of their neighborhood, neighbors and the whole city has been built

(Benenson 1998). A micro-simulation model for residential location choice has been

developed, in which the Monte Carlo method was employed to model individual

decision rules and an Artificial Neural Network (ANN) theory has been utilized

to determine individual location choice (Raju et al. 1998). It is apparent that the

principle of ABM has brought numerous researchers into the field of residential

mobility simulation. Since residential location has been abundantly simulated, some

researchers have begun to consider the environmental influences and landscape

changes caused by household residential location choice. A framework called

HI-LIFE, to be used for simulating andmodeling residential demand for new housing

by considering household interactions taking life cycle stages into account was

argued for in 2009 (Fontaine and Rounsevell 2009). Within this work household

residential location choices have been simulated to predict regional landscape

pressure in the future. Furthermore, anABM framework integrating spatial economic

and policy decisions, energy and fuel use, air pollution emissions and assimilation

has been developed for urban sustainability assessments (Zellner et al. 2008).

Land and Housing Market Simulations

For researchers to use ABM to simulate land and housing markets is quite usual

now. In research by D. C. Parker, a local land market was portrayed as a special

conceptual residential market, and the stakeholders and households were agents

within it. This research combined traditional deductive optimization models of

behavior at the agent level with inductive models of price expectation formation

(Parker and Filatova 2008; Filatova et al. 2008). As implemented in this research,

households make decisions on their housing behavior by evaluating the house

utility and finally determining their willingness to pay for it. Another researcher

simulated relocation processes and price setting in an urban housing market

through modeling households’ decision-making on relocation based on perceptions

of housing market probabilities (Ettema 2011). In this study, utility was also an

important factor for households’ preference evaluations.
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Such simulations can be quite helpful for local governments making policies

affecting urban housing and land markets or making decisions about related

policies. However, there is still little exploration into planning behaviors using

ABM approaches.

Simulation of Planning Behaviors in the Planning Process

Limitations of Current Urban Models

We reviewed some typical simulations of urban policy or urban phenomena based

on the ABM approach described above. These studies are typically aimed at

helping planners or decision makers work out special planning policies. Within

these models, urban policies are mostly imported as simulation factors, viewing the

policies as preconditions for simulation. These simulations concentrate mainly on

representing possible urban changes that could be influenced by policy implemen-

tation. However, there is too little information about how a policy making process

could be implemented and how would it influence organizations. Thus, our focus

has come to be how to support policy makers with practical planning behavior

models, through which planning behaviors can be automatically introduced into

complex organizational systems evolving in space and time.

The Garbage Can Model

To solve the problem discussed above, we introduce the garbage can model. The

garbage can model of organizational planning behavior allows structuring of

planning issues so that control is to be investigated, rather than merely imposed

externally. It is thus particularly appropriate for investigating planning in organi-

zations. Planning interventions or actions are at least partially substitutable for

aspects of organizational design. Both affect the coordination of decisions. Thus to

investigate planning, we must be able to manipulate aspects of organizational

design and of planning interventions in that design. We first explain the original

garbage can model and then introduce planning as an extension of the model.

The original formulation of the garbage can model of organizational choice

considers four elements: choices, solutions, problems, and decision makers (Cohen

et al. 1972). Choices are situations in which decisions can be made, that is,

commitments are made to take certain actions. In organizations, votes to spend

money or signatures on forms to hire or fire persons are examples of actions on

choices. Solutions are actions that might be taken, such as tax schedules that might

be levied or land developments that might be approved. Solutions are things that

choices can commit to enact, things we have the capacity to do directly. Problems

are issues that are likely to persist and that decision makers are concerned with

resolving, such as homelessness, unfair housing practices, congested highways, or
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flooding. Note that choices enact solutions; they do not solve problems. We cannot

merely choose not to have homelessness. We cannot “decide a problem.” We can

choose to spend money on shelters or to hire social workers, which may or may not

affect the persistence of homelessness as a problem. Decision makers are units of

capacity to take action in choice situations.

A garbage can is a choice opportunity where the elements meet in a partially

unpredictable way. Solutions, problems, and decision makers are thrown into a

garbage can and something happens. There is, however, no simple mapping of

decision makers to problems or of solutions to problems. Further, an organization

has many interacting garbage cans, many interacting choice opportunities. The

original model was used to investigate universities as an example of “organized

anarchy.” Structure as control can be increased from this starting point, however,

which makes possible the investigation of a wide range of types and degrees of

organizational structure (e.g., Padgett 1980). Planning and organizational design

are at least partially substitutable strategies for affecting organizational decision

making. Organizational design and planning are both means for “coordinating”

related decisions. Thus the garbage can model provides a useful starting point for

investigating planning behaviors in organizations.

The major assumption of the models is that streams of the four elements are

independent of each other. Solutions may thus occur before the problems these

solutions might resolve are recognized. Choice opportunities may occur

because regular meetings yield decision maker status, independent of whether

solutions are available.

Cohen et al. (1972) reported their results by focusing on four statistics: decision

style, problem activity, problem latency, and decision difficulty. The three decision

styles were resolution, oversight, and flight. Resolution meant that a choice taken

resolved all the problems that were thrown into the garbage can at that choice

opportunity. If a decision was taken for a choice to which no problems were

attached, it was classified as oversight. All other situations constituted flight.

Cohen et al. were able to demonstrate the sensitivity of organizational behavior to

various access structures and decision structures.

The decision process was quite sensitive to net energy load. Net energy load is

the difference between the total energy required for a problem to be resolved

and that available from decision makers. With the general formulation of a decision

process considering net energy load, Cohen et al. (1972) ran a simulation

addressing four variables: net energy load, access structure, decision structure,

and energy distribution. Different net energy loads, roughly analogous to organiza-

tional capacity in the form of decision makers relative to organizational demand,

should yield differences in organizational behavior and outcomes. Access structure

is the relationship between problems and choices. A zero-one matrix defines which

problems can be resolved by which choices. Different access structures vary in the

number of choices that can resolve particular problems. Decision structure defines

which decision makers can address which choices and thus how the total energy

capacity of the organization can be brought to bear in resolving choices.

78 S.-K. Lai and H. Han



Planning Behaviors in Garbage Can Models

The original garbage can model implies that the organization does not have control

over the occurrence of problems and choices. In particular, the organization is not

capable of generating choice opportunities to deal with problems that have just

arisen in a given time step. The arrival of choice opportunities and the arrival of

problems are both random. One way of introducing planning to the model is to allow

the organization to purposefully create choice opportunities for resolving problems.

This choice–problem dependence is a matter of degree with one extreme being the

case of the original garbage can and the other extreme a complete mapping of

arriving problems to created choice opportunities. This is equivalent to being able to

compare garbage cans and choose one to act in at each time period of the simulation.

What effect would the ability to choose among choice opportunities over time so as

to match current problems have on the simulation results?

Lai (1998, 2003) ran a prototypical simulation to illustrate this approach. He

assumed that, at a given time step, the planner is able to acquire complete informa-

tion about the structure of the organization, except for the arrival of problems in that

time period. The planner knows the decision structure and access structure, and the

relationships among the elements. Thus the planner can predict which decision

makers and problems will be in which garbage cans (choice opportunities) and how

much energy will be accumulated in and spent by decision makers in each one.

Choice opportunities in this case are related choices that the planner can select from

based on the difference between the energy required to make a decision and the

energy available from decision makers. The planning criterion is thus to select the

choice opportunity (the garbage can) that results in the smallest energy deficit.

Planning thus defined involves choosing the entry times for choices, without

considering problems, decision makers, or solutions. Simulation results were sen-

sitive to interventions based on this definition of planning. In the pilot study, such

planning resulted in increasing the efficiency with which choices were made,

meaning more choices were made with less energy expended, but fewer problems

were resolved. Problems, choices, and decision makers tended to remain attached to

each other in the case where planning occurred more than in the case without

planning.

Lai’s work was only tentative because of the small size of the simulations. Also,

his scheme is only one way of introducing planning into the original model. Control

as structure over other elements could also be considered. A combination of

partial controls in experimental design on the four elements might yield planning

possibilities that would result in more useful analyses of simulation results. Regard-

less of these details, Lai (1998, 2003) was able to demonstrate the possibility of

gleaning instructive results for understanding planning effects because he showed

that it is possible to add structure to decision making without increasing the

organization’s ability to resolve problems. The result suggests that this simulation

modeling approach incorporates sufficient degrees of freedom to discover counter-

intuitive results.
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Incorporation of Spatial Relationships

All planning behaviors have to be conducted within a certain urban space. Thus,

there is no doubt that when planners try to make a plan there will be an interaction

between the urban area and planning behaviors. How to better represent the spatial

process of planning behavior is now a problem. In this session, we first review how

spatial processes are explored using CA and ABM approaches in current research

reports and then present two examples for discussion on how spatial datasets can be

integrated into ABM simulations. We present a possible solution using a Prisoner’s

dilemma game to simulate spatial evolution in planning behaviors, such as planning

in organizations promoted by the Garbage can model.

Spatial Process of Urban Modeling

Urban Modeling and Spatial Processes

In urban modeling, spatial processes can be simulated through automata. There are

automata of different types, but simply put, each automaton can be defined as a

discrete processing mechanism with internal states. When the state of one automa-

ton has been changed by its own characteristics or through input from outside

conditions, such as urban policies, this change will be transmitted to other automata

through a predetermined transition rule. Thus, researchers can represent a spatial

process by defining the spatial features of automata and the transition rule between

them. A typical application of this principle is CA simulation, in which a real

urban space is modelled as a cell in the simulation. Each cell has its own spatial

characteristics, and urban policies can be input as simulation conditions. Changing

conditions will finally result in a cell state change. This type of model has been used

in research simulating strategic spatial plans, with cells’ spatial attributes including

landscape, land-use zoning, slope, urban plan, and land price (Ma et al. 2010).

These attributes will determine the state value of a cell, and so, along with the

transition rule, determine any changes of state it may undergo.

Spatial processes within ABM can be achieved through the interaction between

agents and space. Spatial information for a simulation model can be gained

by coupling geographic information systems with the model. Some researchers in

this field have argued that a simulation approach named the geographic automata

system, in which a MAS can be combined with CA and which takes advantages

of GI Science to model complex geographic systems that are comprised of infra-

structure features and human objects (Torrens and Benenson 2005). Within

geosimulation, the most common implementation of multi-agent models is for the

agents to act as objects within a spatial framework (Albrecht 2005; Benenson and

Torrens 2004). This approach also can be employed for residential mobility simu-

lation (Torrens 2007).
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As most simulations of residential location do, the spatial features of a cell are

utilized to calculate the location utility for agents. Thus, the interaction between

agents and space can be within the simulation model. As in the research on

residential pressure on landscape change we reviewed before, regional space is

represented by a regular lattice of grid cells indexed by their geographic coordinates

(i, j) in the matrix space {I � J}. Each cell is considered to be a homogenous land

unit with key spatial information including three groups, like available properties,
land accessibility, and environmental amenities. Interaction between agents and

space takes place as agents choose their new location by evaluating the utility of

cells. Household location change will further change the landscape of a cell.

Thereby, landscape pressure can be evaluated (Fontaine and Rounsevell 2009).

GIS and Spatial Datasets

The ABM simulations can (e.g., Jiang 2000) be run on a platform combining

geographic information systems and ABM or CA, the former being the ArcGIS

system of ESRI whereas the latter is an agent-based or CA software such as

StarLogo, created by MIT or AUGH, developed by Cecchini (1996). Two examples

of such coupling are provided here. In the first example, a land-use change model

was constructed with the StarLogo software programmed by MIT coupled with GIS

(Lai and Han 2009). The research assessed the probability of development based on

economic property right indices, and the probability of possible land uses allowed

in the zoning system was embedded in the simulation rules. Finally, the research

used parameters developed over 100 generations of a genetic algorithm method to

calibrate the simulation model. The main results from this research are as follows:

(1) Using the parameters gained from the genetic algorithm method, the model was

indeed able to simulate, at least partially, the pattern of land uses for the Taipei

metropolitan area. (2) The zoning system in the simulated area does influence the

appearance and pattern of land uses. It limits the development of industrial land use

and affects the fractal pattern of commercial land use. (3) After comparing the

spatial patterns of simulation results and conducting one-way ANOVA analysis, it

can be concluded that zoning affects specific locations, but not the fractal pattern of

land uses.

Figure 4.1 shows the logic of how the use type of a particular parcel (cell) is

determined. Note that the use types are checked against zoning regulations in which

mixed uses are allowed. Figure 4.2 is a sample illustration of the simulation and

Fig. 4.3 is the interface.

In the second example, research was conducted, grounded on a microscopic

simulation approach to studying how decisions made locally give rise to global

patterns (Lai and Chen 1999). CA provide the simplest bottom-up way to study

discrete systems and complex urban spatial systems. Based on the coupling of a CA

model and GIS of a small town in central Taiwan, Minjian Township, the research

focused on an agent-based simulation approach to considering land-use and trans-

portation networks as two traits of the evolution of complex urban spatial systems.
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Determine if the use type is 
allowed by zoning through the 
Monte Carlo method

Determine if the parcel can be in 
industrial use through the Monte 
Carlo method

Determine if the parcel can be in 
commercial use through the 
Monte Carlo method

Determine if the use type is 
allowed by zoning through the 
Monte Carlo method

Determine if the parcel can be in 
residential use through the Monte 
Carlo method

Transform the parcel 
to industrial use

Transform the parcel 
to residential use

Transform the parcel 
to commercial use

Maintain the original 
use type

Determine if the use type is 
allowed by zoning through the 
Monte Carlo method

Yes

No

Compute indices of economic property right
Compute probabilities of land uses

Compute probabilities of land uses allowed by 
zones

Fig. 4.1 Logic of computing and determining land-use transitions

Fig. 4.2 Sample simulation

plot (Black ¼ road;

blue ¼ transit line;

I ¼ industrial;

C ¼ commercial;

R ¼ residential; E ¼ vacant)
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The simulation views land development decisions as simple rules characterized by

degrees of complexity and diversity. Three factors, the numbers of transition rules

(N), the diversity of transition rules (D), and the numbers classifications of the

transition rules (n), are derived from theories of measures of complexity and

evolution in general system theory (GST). Simulating systems behavior based

on the transition rules classified and sorting out the results by the three factors

shows that when the diversity of rules increases, the urban structure will grow in

a complex, fractal way. Figure 4.4 shows the simulation framework and two

illustrations of the simulation are given in Fig. 4.5. Note that the simulation was

run on the AUGH platform (Cecchini 1996). Both rules of the simulation in Fig. 4.5

are for high diversity, measured by and derived from different levels of complexity.

Space Evolution in Planning Behavior

Prisoner’s Dilemma Game in Space

Planning in the context of urban development, both physical and social, must

acknowledge the significance of spatial effects of association and competition.

Recent work on evolution of behavior, characterized as games in space, provides

one starting point for incorporating space in simulations (Nowak 2006). Here, we

first present the model of Nowak and May (1993) and then introduce planning to the

Fig. 4.3 Simulation interface. Rules of the genetic algorithm (upper buttons) and the simulated

maps and necessary data (lower buttons) are displayed
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model. Allen and Sanglier (1981) considered some aspects of urban spatial evolu-

tion in a similar framework.

Nowak and May (1993) investigated the spatial evolution of a set of actors in a

square lattice as actors in a sequence of prisoner’s dilemma games. The prisoner’s

dilemma game presents each player with two options: cooperate or defect. The

payoffs are determined by the combination of plays such that the values of the

payoffs for player one decrease in the following order DC > CC > DD > CD

where C signifies cooperate and D signifies defect. The first strategy is the action of

player one, and the second is the action of player two. Player two faces a symmetric

situation. The dilemma is that it is in each player’s individual interest to defect

regardless of the action of the other, but in doing so they both end up worse off,

since DD has a lower payoff for each player than CC. Interaction among players

(agents) in a spatial configuration based on this simple decision rule generates

Analysis of Simulation

Summarize simulation results in 
terms of statistics 

GIS Map

Determine the use of central site
in a Moore neighborhood

Rule specification

AUGH
Automata 

Time step = 0 Time step>1

Rule Base
Rule combination of diversity 

Complexity 1 

Complexity 5 

Land Use and 
Transportation 
Network of 
Minjian  

Computing fractal dimension
for land use and transportation 
network for each time step

Fig. 4.4 Simulation framework (complexity 1 through 5 represent degrees of complexity as

measured by fractals)

Fig. 4.5 Coupling of a CA

model with GIS to

explore land use and

transportation interaction

(yellow ¼ residential;

red ¼ commercial;

gray ¼ road; blue ¼ river)
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complex spatial patterns given different relative payoff levels. The effects of

spatial configurations can be investigated by comparing the results of non-spatial

sequences of prisoner dilemma games.

Arthur (1989, 1994) interpreted a similar sequence in terms of increasing returns

to market share. He showed that if the payoff for adopting a strategy increases with

the number of agents adopting the same strategy, it is impossible to predict the

eventual evolutionary outcome of the resulting trajectory of market share. One

typical illustration of this phenomenon is the adoption of particular computer

software packages. The payoff increases with the number of other adopters because

of the greater likelihood of additional compatible packages, knowledgeable users,

and continuing upgrades. Similarly, consumers seem to have made choices about

Betamax versus VHS in video formats at least partially on the basis of likelihood of

available videotapes to play rather than on picture quality.

Planning in a Spatial Evolution Game

The payoff in the prisoner’s dilemma game will then vary depending on the

number of agents in the “neighborhood” choosing a particular option: cooperate

or defect. This combination can be described using the fractal concept of space (see

Mandelbrot 1983; Batty and Longley 1994; Batty 2005). This approach allows

simulations to characterize spatial relations across continuous dimensions, which

can represent a richer variety of urban geographic relationships or organizational

structures more effectively than Euclidean space.

Consider a continuum of space-filling agents residing in a space of fractal

dimension who act based on the payoff in the prisoner’s dilemma game and the

principles of garbage can simulation. Each agent makes one of two choices, defect

or cooperate, as in the usual prisoner’s dilemma game. The payoffs, however, are

not fixed, but depend on the numbers of these choices adopted in the system. The

payoffs for player one are depicted below, where (p,q) denotes the initial payoff or

preference for choice p made by an agent interacting with another agent making

choice q; r is the rate of change of return relative to the number of agents making a

particular choice; and n(p) is the total number of agents choosing choice p. The

rate r can be positive, negative, or zero, representing increasing, decreasing, or

constant rates of return, respectively. Note that a(d,c) > a(c,c) > a(d,d) > a(c,d)

(Table 4.1).

The agent chooses for the next time step so that it yields the maximum payoff

based on the choices among its neighbors at the current time step. The neighbors are

the agents, including the agent under consideration, located within a radius R from

Table 4.1 Payoff matrix

Player 1/Player 2 Cooperate Defect

Cooperate a(c,c) + rn(c) a(c,d) + rn(c)

Defect a(d,c) + rn(d) a(d,d) + rn(d)
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the site where the agent is located in fractal space. The agent can also make a choice

by selecting the maximum payoff among the agents located within its “neighbor-

hood” or the square lattice over time period T. R and T are thus indicative of

planning investment in space and in time according to our definition. That is, they

denote the scope of related choices considered in space and time, respectively. Let

M (R,k) be agents standing for the mass of the fractal sub-space with radius R and

center k. We have M (R,k) ¼ uR(D) where u is a uniform density and D is a fractal

dimension (Mandelbrot 1983). The total payoff for an agent j located at the center

of M(R,j) is the sum of the payoffs for that agent interacting with all agents i in

M(R,j), including j itself. That is,

P j; t;R; Tð Þ ¼
XX

½ða c j; tð Þ; c i; tð Þð Þ þ rn c j; tð Þð Þ�

where P(j,t,R,T) ¼ the cumulative payoff function for j over time periodT at time twithin

M(R,j), and c(j,t) ¼ the choice made by j at time t.

The first summation is over t of elements of the set T and the second is over i

elements of the set M(R,j). The decision rule for any agent k at time t + l is to adopt

the choice made by the agents in k’s neighborhood that yields the maximum payoff.

That is,

c k; tþ lð Þ ¼ c j I Max P j; t;R;Tð Þð Þ; for j is an agent of M R; kð Þ:

This form of simulation of spatially structured behavior provides a basis for

incorporating space into a simulation model similar to the garbage can model

discussed above.

Idea for Integrating the Garbage Can Model with a Spatial

Evolution Game for Planning Simulation

To incorporate the garbage can model into a spatial model, consider a continuum of

decision makers (agents) in a fractal space. There are finite numbers of problems

and choices. Define a decision structure of relationships among decision makers

and choices, an access structure of relationships between problems and choices, and

a solution structure between solutions and problems. These zero-one matrices of

relationships have the same meaning and range of forms as in the original garbage

can model and are givens external to each simulation run. These structures can be

varied as described earlier to discover their effects on choice-making behavior.

The initial payoffs for all decision makers are the same, but these payoffs vary

with respect to two variables in the simulation. The first variable is the number of

agents that adopted that choice in the particular time step of the simulation. The

second variable is the problems associated with that choice at that time. Because the

problems arrive in a random sequence, the payoffs are subject to random
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fluctuations and the evolution is not deterministic. The payoff table is therefore

different from that of the prisoner’s dilemma game because in the spatial version

there is interaction among the agents involved. The decision rule for an agent

adopting a particular choice is the same as that in our spatial model: the best choice

is the one that yields the maximum payoff considering the choices among the

agent’s neighbors in space and time.

This spatial version of the prisoner’s dilemma model can then be used to

consider the effects of space on a garbage can model that also incorporates planning

behaviors as suggested in Fig. 4.6. We have not yet run such simulations in a

structured way so as to test the sensitivity of this model to spatial scope or temporal

consideration of related choices. We can identify, however, the types of questions

that might be addressed. Different types of organizational structures, from strictly

hierarchical to “matrix” structures could be considered as partial substitutes

for planning intervention. For example, does a hierarchical organizational structure

benefit less from planning than a “matrix” organization? Does planning that is

focused on considering more related choices (that is more garbage cans) yield more

problem resolutions than planning focused on generating solutions for fewer

choices (garbage cans)? What differences arise from increasing the size of the

neighborhood in space relative to increasing the size of the neighborhood in time?

A spatial version of the Garbage can model has been provided (Lai 2006), and the

simulation framework suggested here can be considered as a sequel to that model.

Conclusions

We have proposed modified versions of two previously proposed simulation models

to allow consideration of the effects of planning in complex, spatial, temporal

organizational systems. We have extended the garbage can model of Cohen,

Decision Decision
DM

DM

DM

Interaction rule: spatial
Prisoner’s dilemma game

The organizational system

Problems

Choice opportunities

Fig. 4.6 Relationship between the garbage can model and the prisoner’s dilemma game model

(DM decision maker)
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March, and Olsen so as to consider a particular definition of planning behavior.

Recent simulation runs suggest that the revised model is sensitive to these planning

interventions. We have also proposed a revised version of the prisoner’s dilemma

spatial game taking into account space and planning. In particular we have consid-

ered increasing returns, planning investments, and fractal space. Such simulations

can be coupled with GIS to yield policy implications for real world situations. The

major work of running structured sets of simulations so as to discover and elucidate

systemic principles remains.

Simulations of this type are of interest because of the abstract form of questions

that can be considered. The intent is not to simulate concrete, specific cases, but to

understand the functioning of systems. The simulation result is encouraging in that

it implies planning interventions might increase the efficiency of choice making

without increasing the number of problems resolved. This suggests that useful,

counterintuitive properties might be discovered. Such systemic understanding must

then be interpreted in concrete terms for organizational behavior.
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